Systematic evaluation of methylation-based cell type deconvolution methods for plasma cell-free DNA

被引:0
|
作者
Sun, Tongyue [1 ]
Yuan, Jinqi [1 ]
Zhu, Yacheng [1 ]
Li, Jingqi [1 ]
Yang, Shen [1 ]
Zhou, Junpeng [1 ]
Ge, Xinzhou [2 ]
Qu, Susu [3 ]
Li, Wei [4 ]
Li, Jingyi Jessica [5 ,6 ,7 ,8 ,9 ]
Li, Yumei [1 ]
机构
[1] Soochow Univ, Suzhou Med Coll, Sch Basic Med Sci, Suzhou 215123, Peoples R China
[2] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
[3] Chinese Inst Brain Res, Beijing 102206, Peoples R China
[4] Univ Calif Irvine, Sch Med, Dept Biol Chem, Div Computat Biomed, Irvine, CA 92697 USA
[5] Univ Calif Los Angeles, Dept Stat & Data Sci, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Interdept Program Bioinformat, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA 90095 USA
[9] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
关键词
Benchmark; Cell-free DNA; DNA methylation; Deconvolution; CANCER; HYPOMETHYLATION; DATABASE; ORIGIN;
D O I
10.1186/s13059-024-03456-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundPlasma cell-free DNA (cfDNA) is derived from cellular death in various tissues. Investigating the tissue origin of cfDNA through cell type deconvolution, we can detect changes in tissue homeostasis that occur during disease progression or in response to treatment. Consequently, cfDNA has emerged as a valuable noninvasive biomarker for disease detection and treatment monitoring. Although there are many methylation-based methods for cfDNA cell type deconvolution, a comprehensive and systematic evaluation of these methods has yet to be conducted.ResultsIn this study, we benchmark five methods: MethAtlas, cfNOMe toolkit, CelFiE, CelFEER, and UXM. Utilizing deep whole-genome bisulfite sequencing data from 35 human cell types, we generate in silico cfDNA samples with ground truth cell type proportions to assess the deconvolution performance of the five methods under multiple scenarios. Our findings indicate that multiple factors, including reference marker selection, sequencing depth, and reference atlas completeness, jointly influence the deconvolution performance. Notably, an incomplete reference with missing markers or cell types leads to suboptimal results. We observe performance differences among methods under varying conditions, underscoring the importance of tailoring cfDNA deconvolution analyses. To increase the clinical relevance of our findings, we further evaluate each method's performance in potential clinical applications using real-world datasets.ConclusionsBased on the benchmark results, we propose general guidelines to choose the suitable methods based on sequencing depth of the cfDNA data and completeness of the reference atlas to maximize the performance of methylation-based cfDNA cell type deconvolution.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] MetDecode: methylation-based deconvolution of cell-free DNA for noninvasive multi-cancer typing
    Passemiers, Antoine
    Tuveri, Stefania
    Sudhakaran, Dhanya
    Jatsenko, Tatjana
    Laga, Tina
    Punie, Kevin
    Hatse, Sigrid
    Tejpar, Sabine
    Coosemans, An
    Van Nieuwenhuysen, Els
    Timmerman, Dirk
    Floris, Giuseppe
    Van Rompuy, Anne-Sophie
    Sagaert, Xavier
    Testa, Antonia
    Ficherova, Daniela
    Raimondi, Daniele
    Amant, Frederic
    Lenaerts, Liesbeth
    Moreau, Yves
    Vermeesch, Joris R.
    BIOINFORMATICS, 2024, 40 (09)
  • [2] A DNA Methylation-Based Test for Breast Cancer Detection in Circulating Cell-Free DNA
    Salta, Sofia
    Nunes, Sandra P.
    Fontes-Sousa, Mario
    Lopes, Paula
    Freitas, Micaela
    Caldas, Margarida
    Antunes, Luis
    Castro, Fernando
    Antunes, Pedro
    de Sousa, Susana Palma
    Henrique, Rui
    Jeronimo, Carmen
    JOURNAL OF CLINICAL MEDICINE, 2018, 7 (11)
  • [3] Methylation-based Cell-free DNA Signature for Early Detection of Pancreatic Cancer
    Ying, Lee
    Sharma, Anup
    Chhoda, Ankit
    Ruzgar, Nensi
    Hasan, Nesrin
    Kwak, Ruby
    Wolfgang, Christopher L.
    Wang, Tza Huei
    Kunstman, John W.
    Salem, Ronald R.
    Wood, Laura D.
    Iacobuzio-Donahue, Christine
    Schneider, Eric B.
    Farrell, James J.
    Ahuja, Nita
    PANCREAS, 2021, 50 (09) : 1267 - 1273
  • [4] Cell-free DNA methylation-based preeclampsia prediction: A journey to improve maternal health
    Mio, Aerden
    Marie, De Borre
    Bernard, Thienpont
    PRENATAL DIAGNOSIS, 2024, 44 (04) : 418 - 421
  • [5] Cell-Free DNA-Methylation-Based Methods and Applications in Oncology
    Galardi, Francesca
    De Luca, Francesca
    Romagnoli, Dario
    Biagioni, Chiara
    Moretti, Erica
    Biganzoli, Laura
    Di Leo, Angelo
    Migliaccio, Ilenia
    Malorni, Luca
    Benelli, Matteo
    BIOMOLECULES, 2020, 10 (12) : 1 - 23
  • [6] Individualized dynamic methylation-based analysis of cell-free DNA in postoperative monitoring of lung cancer
    Kezhong Chen
    Guannan Kang
    Zhihong Zhang
    Analyn Lizaso
    Stephan Beck
    Iben Lyskjær
    Olga Chervova
    Bingsi Li
    Haifeng Shen
    Chenyang Wang
    Bing Li
    Heng Zhao
    Xi Li
    Fan Yang
    Nnennaya Kanu
    Jun Wang
    BMC Medicine, 21
  • [7] Individualized dynamic methylation-based analysis of cell-free DNA in postoperative monitoring of lung cancer
    Chen, Kezhong
    Kang, Guannan
    Zhang, Zhihong
    Lizaso, Analyn
    Beck, Stephan
    Lyskjaer, Iben
    Chervova, Olga
    Li, Bingsi
    Shen, Haifeng
    Wang, Chenyang
    Li, Bing
    Zhao, Heng
    Li, Xi
    Yang, Fan
    Kanu, Nnennaya
    Wang, Jun
    BMC MEDICINE, 2023, 21 (01)
  • [8] Mrassf1a-Pap, a Novel Methylation-Based Assay for the Detection of Cell-Free Fetal DNA in Maternal Plasma
    van den Oever, Jessica M. E.
    Balkassmi, Sahila
    Segboer, Tim
    Verweij, E. Joanne
    van der Velden, Pieter A.
    Oepkes, Dick
    Bakker, Egbert
    Boon, Elles M. J.
    PLOS ONE, 2013, 8 (12):
  • [9] A novel cell-free DNA methylation-based model improves the early detection of colorectal cancer
    Wu, Xianrui
    Zhang, Yunfeng
    Hu, Tuo
    He, Xiaowen
    Zou, Yifeng
    Deng, Qiling
    Ke, Jia
    Lian, Lei
    He, Xiaosheng
    Zhao, Dezhi
    Cai, Xuyu
    Chen, Zhiwei
    Wu, Xiaojian
    Fan, Jian-Bing
    Gao, Feng
    Lan, Ping
    MOLECULAR ONCOLOGY, 2021, 15 (10) : 2702 - 2714
  • [10] MetDecode: a novel methylation-based method for cell-free DNA tissue-of-origin assignment
    Tuveri, Stefania
    Sudhakaran, Dhanya
    Passemiers, Antoine
    Jatsenko, Tatjana
    Raimondi, Daniele
    Amant, Frederic
    Lenaerts, Liesbeth
    Moreau, Yves
    Vermeesch, Joris Robert
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 611 - 611