Deep Learning-Based Body Composition Analysis for Cancer Patients Using Computed Tomographic Imaging

被引:0
作者
Yildiz Potter, Ilkay [1 ]
Velasquez-Hammerle, Maria Virginia [2 ,3 ,4 ,5 ]
Nazarian, Ara [2 ,4 ,6 ]
Vaziri, Ashkan [1 ]
机构
[1] BioSensics LLC, 57 Chapel St, Newton, MA 02458 USA
[2] Beth Israel Deaconess Med Ctr BIDMC, Carl J Shapiro Dept Orthoped Surg, 330 Brookline Ave,Stoneman 10, Boston, MA 02215 USA
[3] Harvard Med Sch, 330 Brookline Ave,Stoneman 10, Boston, MA 02215 USA
[4] Beth Israel Deaconess Med Ctr, Musculoskeletal Translat Innovat Initiat, 330 Brookline Ave RN123, Boston, MA 02215 USA
[5] Harvard Med Sch, 330 Brookline Ave RN123, Boston, MA 02215 USA
[6] Yerevan State Univ, Dept Orthopaed Surg, Yerevan, Armenia
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2025年 / 38卷 / 04期
关键词
Cancer; Computed tomography; Deep learning; Segmentation; Body composition; NUTRITIONAL ASSESSMENT QUESTIONNAIRE; MALNUTRITION SCREENING TOOLS; SKELETAL-MUSCLE; CACHEXIA; VALIDITY; SARCOPENIA; SEGMENTATION; PREVALENCE; SURGERY; OBESITY;
D O I
10.1007/s10278-024-01373-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Malnutrition is a commonly observed side effect in cancer patients, with a 30-85% worldwide prevalence in this population. Existing malnutrition screening tools miss similar to 20% of at-risk patients at initial screening and do not capture the abnormal body composition phenotype. Meanwhile, the gold-standard clinical criteria to diagnose malnutrition use changes in body composition as key parameters, particularly body fat and skeletal muscle mass loss. Diagnostic imaging, such as computed tomography (CT), is the gold-standard in analyzing body composition and typically accessible to cancer patients as part of the standard of care. In this study, we developed a deep learning-based body composition analysis approach over a diverse dataset of 200 abdominal/pelvic CT scans from cancer patients. The proposed approach segments adipose tissue and skeletal muscle using Swin UNEt TRansformers (Swin UNETR) at the third lumbar vertebrae (L3) level and automatically localizes L3 before segmentation. The proposed approach involves the first transformer-based deep learning model for body composition analysis and heatmap regression-based vertebra localization in cancer patients. Swin UNETR attained 0.92 Dice score in adipose tissue and 0.87 Dice score in skeletal muscle segmentation, significantly outperforming convolutional benchmarks including the 2D U-Net by 2-12% Dice score (p-values < 0.033). Moreover, Swin UNETR predictions showed high agreement with ground-truth areas of skeletal muscle and adipose tissue by 0.7-0.93 R-2, highlighting its potential for accurate body composition analysis. We have presented an accurate body composition analysis based on CT imaging, which can enable the early detection of malnutrition in cancer patients and support timely interventions.
引用
收藏
页码:2281 / 2293
页数:13
相关论文
共 93 条
[41]   Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis [J].
Lee, Hyunkwang ;
Troschel, Fabian M. ;
Tajmir, Shahein ;
Fuchs, Georg ;
Mario, Julia ;
Fintelmann, Florian J. ;
Do, Synho .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :487-498
[42]   Recent Issues on Body Composition Imaging for Sarcopenia Evaluation [J].
Lee, Koeun ;
Shin, Yongbin ;
Huh, Jimi ;
Sung, Yu Sub ;
Lee, In-Seob ;
Yoon, Kwon-Ha ;
Kim, Kyung Won .
KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (02) :205-217
[43]  
Lehmann EL., 1986, TESTING STAT HYPOTHE, V3, DOI DOI 10.1007/978-1-4757-1923-9
[44]   Validity of nutritional screening with MUST and SNAQ in hospital outpatients [J].
Leistra, E. ;
Langius, J. A. E. ;
Evers, A. M. ;
van Bokhorst-de van der Schueren, M. A. E. ;
Visser, M. ;
de Vet, H. C. W. ;
Kruizenga, H. M. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2013, 67 (07) :738-742
[45]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002
[46]   Changes in Spine Alignment and Postural Balance After Breast Cancer Surgery: A Rehabilitative Point of View [J].
Mangone, Massimiliano ;
Bernetti, Andrea ;
Agostini, Francesco ;
Paoloni, Marco ;
De Cicco, Francesco A. ;
Capobianco, Serena, V ;
Bai, Arianna, V ;
Bonifacino, Adriana ;
Santilli, Valter ;
Paolucci, Teresa .
BIORESEARCH OPEN ACCESS, 2019, 8 (01) :121-128
[47]   Cancer-Associated Malnutrition and CT-Defined Sarcopenia and Myosteatosis Are Endemic in Overweight and Obese Patients [J].
Martin, Lisa ;
Gioulbasanis, Ioannis ;
Senesse, Pierre ;
Baracos, Vickie E. .
JOURNAL OF PARENTERAL AND ENTERAL NUTRITION, 2020, 44 (02) :227-238
[48]   Assessment of Computed Tomography (CT)-Defined Muscle and Adipose Tissue Features in Relation to Short-Term Outcomes After Elective Surgery for Colorectal Cancer: A Multicenter Approach [J].
Martin, Lisa ;
Hopkins, Jessica ;
Malietzis, Georgios ;
Jenkins, J. T. ;
Sawyer, Michael B. ;
Brisebois, Ron ;
MacLean, Anthony ;
Nelson, Gregg ;
Gramlich, Leah ;
Baracos, Vickie E. .
ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (09) :2669-2680
[49]   Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index [J].
Martin, Lisa ;
Birdsell, Laura ;
MacDonald, Neil ;
Reiman, Tony ;
Clandinin, M. Thomas ;
McCargar, Linda J. ;
Murphy, Rachel ;
Ghosh, Sunita ;
Sawyer, Michael B. ;
Baracos, Vickie E. .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (12) :1539-1547
[50]   Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: a systematic review [J].
Miller, Janice ;
Wells, Liz ;
Nwulu, Ugochinyere ;
Currow, David ;
Johnson, Miriam J. ;
Skipworth, Richard J. E. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2018, 108 (06) :1196-1208