Deep Learning-Based Body Composition Analysis for Cancer Patients Using Computed Tomographic Imaging

被引:0
作者
Yildiz Potter, Ilkay [1 ]
Velasquez-Hammerle, Maria Virginia [2 ,3 ,4 ,5 ]
Nazarian, Ara [2 ,4 ,6 ]
Vaziri, Ashkan [1 ]
机构
[1] BioSensics LLC, 57 Chapel St, Newton, MA 02458 USA
[2] Beth Israel Deaconess Med Ctr BIDMC, Carl J Shapiro Dept Orthoped Surg, 330 Brookline Ave,Stoneman 10, Boston, MA 02215 USA
[3] Harvard Med Sch, 330 Brookline Ave,Stoneman 10, Boston, MA 02215 USA
[4] Beth Israel Deaconess Med Ctr, Musculoskeletal Translat Innovat Initiat, 330 Brookline Ave RN123, Boston, MA 02215 USA
[5] Harvard Med Sch, 330 Brookline Ave RN123, Boston, MA 02215 USA
[6] Yerevan State Univ, Dept Orthopaed Surg, Yerevan, Armenia
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2025年 / 38卷 / 04期
关键词
Cancer; Computed tomography; Deep learning; Segmentation; Body composition; NUTRITIONAL ASSESSMENT QUESTIONNAIRE; MALNUTRITION SCREENING TOOLS; SKELETAL-MUSCLE; CACHEXIA; VALIDITY; SARCOPENIA; SEGMENTATION; PREVALENCE; SURGERY; OBESITY;
D O I
10.1007/s10278-024-01373-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Malnutrition is a commonly observed side effect in cancer patients, with a 30-85% worldwide prevalence in this population. Existing malnutrition screening tools miss similar to 20% of at-risk patients at initial screening and do not capture the abnormal body composition phenotype. Meanwhile, the gold-standard clinical criteria to diagnose malnutrition use changes in body composition as key parameters, particularly body fat and skeletal muscle mass loss. Diagnostic imaging, such as computed tomography (CT), is the gold-standard in analyzing body composition and typically accessible to cancer patients as part of the standard of care. In this study, we developed a deep learning-based body composition analysis approach over a diverse dataset of 200 abdominal/pelvic CT scans from cancer patients. The proposed approach segments adipose tissue and skeletal muscle using Swin UNEt TRansformers (Swin UNETR) at the third lumbar vertebrae (L3) level and automatically localizes L3 before segmentation. The proposed approach involves the first transformer-based deep learning model for body composition analysis and heatmap regression-based vertebra localization in cancer patients. Swin UNETR attained 0.92 Dice score in adipose tissue and 0.87 Dice score in skeletal muscle segmentation, significantly outperforming convolutional benchmarks including the 2D U-Net by 2-12% Dice score (p-values < 0.033). Moreover, Swin UNETR predictions showed high agreement with ground-truth areas of skeletal muscle and adipose tissue by 0.7-0.93 R-2, highlighting its potential for accurate body composition analysis. We have presented an accurate body composition analysis based on CT imaging, which can enable the early detection of malnutrition in cancer patients and support timely interventions.
引用
收藏
页码:2281 / 2293
页数:13
相关论文
共 93 条
[1]   Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients [J].
Ackermans, Leanne L. G. C. ;
Volmer, Leroy ;
Wee, Leonard ;
Brecheisen, Ralph ;
Sanchez-Gonzalez, Patricia ;
Seiffert, Alexander P. ;
Gomez, Enrique J. ;
Dekker, Andre ;
Ten Bosch, Jan A. ;
Olde Damink, Steven M. W. ;
Blokhuis, Taco J. .
SENSORS, 2021, 21 (06) :1-13
[2]   Myosteatosis and prognosis in cancer: Systematic review and meta-analysis [J].
Aleixo, G. F. P. ;
Shachar, S. S. ;
Nyrop, K. A. ;
Muss, H. B. ;
Malpica, Luis ;
Williams, G. R. .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2020, 145
[3]   The relationship between body mass index and short term postoperative outcomes in patients undergoing potentially curative surgery for colorectal cancer: A systematic review and meta-analysis [J].
Almasaudi, Arwa S. ;
McSorley, Stephen T. ;
Edwards, Christine A. ;
McMillan, Donald C. .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2018, 121 :68-73
[4]  
Argiles J M, 2005, Eur J Oncol Nurs, V9 Suppl 2, pS39, DOI 10.1016/j.ejon.2005.09.006
[5]   NUTRISCORE: A new nutritional screening tool for oncological outpatients [J].
Arribas, Lorena ;
Hurtos, Laura ;
Jose Sendros, Maria ;
Peiro, Inmaculada ;
Salleras, Neus ;
Fort, Eduard ;
Manuel Sanchez-Migallon, Jose .
NUTRITION, 2017, 33 :297-303
[6]  
Ba JimmyLei., 2016, CORR
[7]   NUTRITIONAL ASSESSMENT - A COMPARISON OF CLINICAL JUDGMENT AND OBJECTIVE MEASUREMENTS [J].
BAKER, JP ;
DETSKY, AS ;
WESSON, DE ;
WOLMAN, SL ;
STEWART, S ;
WHITEWELL, J ;
LANGER, B ;
JEEJEEBHOY, KN .
NEW ENGLAND JOURNAL OF MEDICINE, 1982, 306 (16) :969-972
[8]   Cancer cachexia is defined by an ongoing loss of skeletal muscle mass [J].
Baracos, Vickie E. ;
Mazurak, Vera C. ;
Bhullar, Amritpal S. .
ANNALS OF PALLIATIVE MEDICINE, 2019, 8 (01) :3-12
[9]   Cancer-associated malnutrition [J].
Baracos, Vickie E. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2018, 72 (09) :1255-1259
[10]   Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks [J].
Bridge, Christopher P. ;
Rosenthal, Michael ;
Wright, Bradley ;
Kotecha, Gopal ;
Fintelmann, Florian ;
Troschel, Fabian ;
Miskin, Nityanand ;
Desai, Khanant ;
Wrobel, William ;
Babic, Ana ;
Khalaf, Natalia ;
Brais, Lauren ;
Welch, Marisa ;
Zellers, Caitlin ;
Tenenholtz, Neil ;
Michalski, Mark ;
Wolpin, Brian ;
Andriole, Katherine .
OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 :204-213