ORBITAL STABILITY OF BIFURCATING SOLUTIONS IN THE NONLINEAR SCHRÓDINGER SYSTEM WITH QUADRATIC INTERACTION

被引:0
作者
Wang, Jun [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
Quadratic elliptic system; orbital stability; nontrivial solutions; bifurcation theorem; STANDING WAVES; SOLITARY WAVES; GROUND-STATES; SCHRODINGER; PERTURBATION; INSTABILITY; MULTIPULSES; SCATTERING; EQUATIONS;
D O I
10.1090/qam/1704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of bifurcation solutions and the orbital stability of a class of coupled elliptic systems with quadratic nonlinearities. These systems are relevant to Raman amplification in plasma. Using the Crandall-Rabinowitz local bifurcation theorem, we prove the existence of positive bifurcation solutions. Additionally, we calculate the Morse index and establish the orbital stability and instability of these bifurcation solutions. Notably, we extend our study to the bifurcation results at the bifurcation point, addressing an open question posed by M. Colin, T. Colin, and M. Ohta (Ann. Inst. H. Poincare<acute accent> C Anal. Non Line<acute accent>aire 26 (2009), 2211-2226; SIAM J. Math. Anal. 44 (2012), 206-223). Furthermore, we discover that the bifurcation solution emerges from the semitrivial solution, indicating a stability exchange when the parameter is small in certain regions. This phenomenon is a particularly interesting finding in this context.
引用
收藏
页码:485 / 505
页数:21
相关论文
共 35 条
[1]   Existence and instability of spike layer solutions to singular perturbation problems [J].
Bates, PW ;
Shi, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :211-264
[2]   Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications [J].
Buryak, AV ;
Di Trapani, P ;
Skryabin, DV ;
Trillo, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 370 (02) :63-235
[3]  
Cazenave Thierry, 2003, COURANT LECT NOTES M, V10
[4]   Spectra of linearized operators for NLS solitary waves [J].
Chang, Shu-Ming ;
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1070-1111
[5]  
Colin M, 2004, DIFFER INTEGRAL EQU, V17, P297
[6]   Stability of solitary waves for a system of nonlinear Schrodinger equations with three wave interaction [J].
Colin, M. ;
Colin, Th. ;
Ohta, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2211-2226
[7]   BIFURCATION FROM SEMITRIVIAL STANDING WAVES AND GROUND STATES FOR A SYSTEM OF NONLINEAR SCHRODINGER EQUATIONS [J].
Colin, Mathieu ;
Ohta, Masahito .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) :206-223
[8]   Instability of Standing Waves for a System of Nonlinear Schrodinger Equations with Three-Wave Interaction [J].
Colin, Mathieu ;
Colin, Thierry ;
Ohta, Masahito .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (03) :371-380
[9]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[10]  
Crandall MG., 1971, J FUNCT ANAL, V8, P321, DOI 10.1016/0022-1236(71)90015-2