Genome-wide exploration: Evolution, structural characterization, molecular docking, molecular dynamics simulation and expression analysis of sugar transporter (ST) gene family in potato (Solanum tuberosum)

被引:0
作者
Mia, Md. Sohel [1 ]
Nayan, Sourav Biswas [2 ]
Islam, Md. Numan [3 ]
Talukder, Md. Enamul Kabir [4 ]
Hasan, Md. Sakib [1 ]
Riazuddin, Md. [2 ]
Shadhin, Md. Saklain Tanver [1 ]
Hossain, Md. Nayim [1 ]
Wani, Tanveer A. [5 ]
Zargar, Seema [6 ]
Rabby, Md. Golam [1 ]
机构
[1] Jashore Univ Sci & Technol, Dept Nutr & Food Technol, Jashore 7408, Bangladesh
[2] North Pacific Int Univ Bangladesh, Dept Food Engn, Dhalla, Bangladesh
[3] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE USA
[4] Jashore Univ Sci & Technol, Dept Genet Engn & Biotechnol, Jashore 7408, Bangladesh
[5] King Saud Univ, Coll Pharm, Dept Pharmaceut Chem, Riyadh 11451, Saudi Arabia
[6] King Saud Univ, Coll Sci, Dept Biochem, Riyadh 11495, Saudi Arabia
关键词
Sugar transporters; Potato; Structural characteristics; Molecular docking; MD simulation; Gene expression; MiRNA; Transcription factors; PLASTIDIC GLUCOSE TRANSLOCATOR; MONOSACCHARIDE TRANSPORTER; TRANSCRIPTION FACTOR; ARABIDOPSIS-THALIANA; SUCROSE TRANSPORTERS; STRESS; IDENTIFICATION; RICE; STARCH; PHLOEM;
D O I
10.1016/j.compbiolchem.2025.108402
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sugars are the basic structural components of carbohydrates. Sugar transport is crucial for plants to ensure their optimal growth and development. Long-distance sugar transport occurs through either diffusion-based passive or active transport mediated by transporter proteins. In potatoes, STs play a vital role in sugar transport and total sugar accumulation. To better understand the roles of these transporters, in-depth structural, protein characterization, and tissue-specific expression analysis were performed. A total of 61 StSTs were identified and classified into eight sub-families (STP, PLT, ERD6L, INT, TMT, pGlcT, SUC, and VGT). The majority of StSTs were found in the plasma membrane, and all of them were dispersed throughout the 12 chromosomes. Exon and motif counts ranged from 1-18 and 1-10, respectively. In synteny analysis with four plant genomes, the highest (38) orthologous gene pair was found with S. lycopersicum (tomato). In 3D protein modeling, the alpha helix and transmembrane helices range varied from 32 % to 78 % and 53 %-57 %, respectively. During molecular docking analysis, the lowest binding energy was observed for Glu-StINT1 (Delta G: - 6.6 kcal/mol), Fru-StVGT1 (Delta G: 6.1 kcal/mol), Gal-StSTP10 (Delta G: - 6.5 kcal/mol), and Suc-StINT2 (Delta G: - 7.5 kcal/mol), among 244 docking results. These complexes showed significant hydrogen and hydrophobic interactions, due to having significant amino acid residues. The molecular dynamics (MD) simulation of four complexes (Glu-StINT1, Fru-StVGT1, GalStSTP10, and Suc-StINT2) validated the ligand's stable attachment to the intended target proteins and it can be predicted that these complexes are the best sugar transporters of potato. In RNA-seq mediated expression analysis, StSTP12, StERD6L-6, 12, StpGlcT3, StVGT1, and StVGT2, were significantly upregulated in vegetative tissues/organs, revealing their significant role in vegetative organ development. In addition, stu-miRNA395 was the largest family interacting with StERD6L-1 and StTMT2 genes, demonstrating their significant role in sulfate metabolism. The detection and visualization of potential transcription factors (TFs) like ERF, Dof, MYB, BBRBPC, LBD, and NAC in conjunction with the StSTs gene indicate their significant contribution to stress tolerance and DNA conversion and transcription into RNA. A significant interaction of StSTs in the PPI network might be due to their cumulative role in the same signaling pathways. The integration of these findings will guide the development of programming-based sugar transporter-mediated genetic circuits to improve the sugar accumulation in potatoes using synthetic biology approaches.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Genome-Wide Identification and Expression Analysis of the Class III Peroxidase Gene Family in Potato (Solanum tuberosum L.)
    Yang, Xuanshong
    Yuan, Jiazheng
    Luo, Wenbin
    Qin, Mingyue
    Yang, Jiahan
    Wu, Weiren
    Xie, Xiaofang
    FRONTIERS IN GENETICS, 2020, 11
  • [22] Genome-wide characterization and expression analysis of soybean trihelix gene family
    Liu, Wei
    Zhang, Yanwei
    Li, Wei
    Lin, Yanhui
    Wang, Caijie
    Xu, Ran
    Zhang, Lifeng
    PEERJ, 2020, 8
  • [23] Genome-wide characterization of the GRF transcription factors in potato (Solanum tuberosum L.) and expression analysis of StGRF genes during potato tuber dormancy and sprouting
    Cui, Danni
    Song, Yin
    Jiang, Weihao
    Ye, Han
    Wang, Shipeng
    Yuan, Li
    Liu, Bailin
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [24] Genome-Wide Identification, and In-Silico Expression Analysis of YABBY Gene Family in Response to Biotic and Abiotic Stresses in Potato (Solanum tuberosum)
    Mazhar, Hafiz Sabah-Ud-Din
    Shafiq, Muhammad
    Ali, Haider
    Ashfaq, Muhammad
    Anwar, Alia
    Tabassum, Javaria
    Ali, Qurban
    Jilani, Ghulam
    Awais, Muhammad
    Sahu, Ravi
    Javed, Muhammad Arshad
    GENES, 2023, 14 (04)
  • [25] Genome-wide characterization of Solanum tuberosum UGT gene family and functional analysis of StUGT178 in salt tolerance
    Ma, Yu
    Song, Jiafeng
    Sheng, Suao
    Wang, Daijuan
    Wang, Tongtong
    Wang, Nan
    Chen, Airu
    Wang, Lixia
    Peng, Yaxuan
    Ma, Yuhan
    Lv, Zhaoyan
    Zhu, Xiaobiao
    Hou, Hualan
    BMC GENOMICS, 2024, 25 (01):
  • [26] Genome-Wide Identification of LOX Gene Family and Its Expression Analysis under Abiotic Stress in Potato (Solanum tuberosum L.)
    Zhu, Jinyong
    Chen, Limin
    Li, Zhitao
    Wang, Weilu
    Qi, Zheying
    Li, Yuanming
    Liu, Yuhui
    Liu, Zhen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [27] Genome-wide identification and expression analysis of the StSWEET family genes in potato (Solanum tuberosum L.)
    Ming Li
    Haijuan Xie
    Miaomiao He
    Wang Su
    Yongzhi Yang
    Jian Wang
    Guangji Ye
    Yun Zhou
    Genes & Genomics, 2020, 42 : 135 - 153
  • [28] Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato (Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress
    Ma, Rui
    Liu, Weigang
    Li, Shigui
    Zhu, Xi
    Yang, Jiangwei
    Zhang, Ning
    Si, Huaijun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (24)
  • [29] Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L.)
    Ma, Haoli
    Cao, Xiaoli
    Shi, Shandang
    Li, Silu
    Gao, Junpeng
    Ma, Yuling
    Zhao, Qin
    Chen, Qin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 107 : 164 - 177
  • [30] Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.)
    Vatansever, Recep
    Koc, Ibrahim
    Ozyigit, Ibrahim Ilker
    Sen, Ugur
    Uras, Mehmet Emin
    Anjum, Naser A.
    Pereira, Eduarda
    Filiz, Ertugrul
    PLANTA, 2016, 244 (06) : 1167 - 1183