Comparative study of pretreatment methods for the reverse enzymatic hydrolysis of Chlorella and Spirulina microalgae for bioethanol production

被引:0
作者
Damayanti, Astrilia [1 ]
Winaningsih, Ima [1 ]
Al Taghna, Ezka [1 ]
Supriyadi, Muhammad [1 ]
Zahra, Salma Aida [1 ]
Khusniyyah, Rikha
Tandirogang, Natanael Adonai [1 ]
Then, Nafadila Avril Ervian [1 ]
机构
[1] Univ Negeri Semarang, Fac Engn, Dept Chem Engn, Sekaran Campus, Semarang 50229, Central Java, Indonesia
来源
BIOFUELS-UK | 2025年
关键词
Acid pretreatment; bioethanol; enzyme hydrolysis; fermentation; microalgae; ETHANOL; BIOMASS; FERMENTATION; PYRENOIDOSA; PLATENSIS; VULGARIS; SP;
D O I
10.1080/17597269.2025.2469384
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The microalgae Chlorella and Spirulina are sources of raw materials for renewable bioethanol production. The conversion of microalgae into ethanol requires the breakdown of complex carbohydrates into glucose via hydrolysis. In this study, reverse enzymatic hydrolysis was performed via incubation with glucoamylase followed by alpha-amylase. The effects of acid and non-acid pretreatment on the glucose yield, surface morphology, and ethanol yield following fermentation were investigated. The proximate results of the dry microalgae powders show that S. platensis exhibited the highest carbohydrate content (52.52%), while C. vulgaris and C. pyrenoidosa contained slightly lower levels of 43.24 and 41.15%, respectively. The maximum glucose yields from S. platensis, C. vulgaris, and C. pyrenoidosa following acid pretreatment were 21.701, 17.632, and 15.126 g/L, respectively. Scanning electron microscopy showed that acid pretreatment damaged the microalgal cell walls to facilitate enzyme access during hydrolysis. The highest ethanol yields were achieved after 48 h of fermentation, 15.85, 11.74, and 11.33 g/L for S. platensis, C. vulgaris, and C. pyrenoidosa, respectively. Sulfuric acid pretreatment before hydrolysis significantly increased bioethanol production from the microalgae. The results also indicate that S. platensis exhibits a superior ethanol production potential than the other microalgae types examined herein.
引用
收藏
页数:7
相关论文
共 45 条
  • [1] Effect of high-pressure treatment on oscillatory rheology, particle size distribution and microstructure of microalgae Chlorella vulgaris and Arthrospira platensis
    Ahmed, Jasim
    Kumar, Vinod
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2022, 62
  • [2] Low-temperature catalytic conversion of alkaline sewage sludge bio-oil to biodiesel: Product characteristics and reaction mechanisms
    Arazo, Renato O.
    Capareda, Sergio C.
    Ofrasio, Bjorn Ivan G.
    Ido, Alexander L.
    Chen, Wei-Hsin
    de Luna, Mark Daniel G.
    [J]. ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2021, 21
  • [3] Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers
    Batista, Ana Paula
    Niccolai, Alberto
    Bursic, Ivana
    Sousa, Isabel
    Raymundo, Anabela
    Rodolfi, Liliana
    Biondi, Natascia
    Tredici, Mario R.
    [J]. FOODS, 2019, 8 (12)
  • [4] Comparison of microalgal biomass profiles as novel functional ingredient for food products
    Batista, Ana Paula
    Gouveia, Luisa
    Bandarra, Narcisa M.
    Franco, Jose M.
    Raymundo, Anabela
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2013, 2 (02): : 164 - 173
  • [5] Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review
    Busic, Arijana
    Mardetko, Nenad
    Kundas, Semjon
    Morzak, Galina
    Belskaya, Halina
    Santek, Mirela Ivancic
    Komes, Drazenka
    Novak, Srdan
    Santek, Bozidar
    [J]. FOOD TECHNOLOGY AND BIOTECHNOLOGY, 2018, 56 (03) : 289 - 311
  • [6] The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792
    Capilla, M.
    San-Valero, P.
    Izquierdo, M.
    Penya-roja, J. M.
    Gabaldon, C.
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2021, 167
  • [7] Chou KJ., 2021, Encyclopedia Biol Chem Third Ed, V2, P551, DOI [10.1016/B978-0-12-819460-7.00017-7, DOI 10.1016/B978-0-12-819460-7.00017-7]
  • [8] Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production
    Constantino, A.
    Rodrigues, B.
    Leon, R.
    Barros, R.
    Raposo, S.
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2021, 56
  • [9] Operating pH influences homogeneous calcium carbonate granulation in the frame of CO2 capture
    de Luna, Mark Daniel G.
    Sioson, Arianne S.
    Choi, Angelo Earvin Sy
    Abarca, Ralf Ruffel M.
    Huang, Yao-Hui
    Lu, Ming-Chun
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 272
  • [10] Chemical characterization and nutritional evaluation of microalgal biomass from large-scale production: a comparative study of five species
    Di Lena, Gabriella
    Casini, Irene
    Lucarini, Massimo
    Sanchez del Pulgar, Jose
    Aguzzi, Altero
    Caproni, Roberto
    Gabrielli, Paolo
    Lombardi-Boccia, Ginevra
    [J]. EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2020, 246 (02) : 323 - 332