Distinct impacts of the El Niño-Southern Oscillation and Indian Ocean Dipole on China's gross primary production

被引:0
作者
Yan, Ran [1 ,2 ]
Wang, Jun [1 ,2 ]
Ju, Weimin [1 ,2 ]
Xing, Xiuli [3 ]
Yu, Miao [4 ]
Wang, Meirong [4 ,5 ]
Tan, Jingye [1 ,2 ]
Wang, Xunmei [1 ,2 ]
Wang, Hengmao [1 ,2 ]
Jiang, Fei [1 ,2 ]
机构
[1] Nanjing Univ, Int Inst Earth Syst Sci, Frontiers Sci Ctr Crit Earth Mat Cycling, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Key Lab Land Satellite Remote Sensing Applicat, Sch Geog & Ocean Sci,Minist Nat Resources, Nanjing 210023, Jiangsu, Peoples R China
[3] Fudan Univ, Dept Environm Sci & Engn, 2005 Songhu Rd, Shanghai 200438, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Joint Ctr Data Assimilat Res & Applicat, Collaborat Innovat Ctr ON Forecast & Evaluat Meteo, Key Lab Meteorol Disaster,Minist Educ,Joint Int R, Nanjing 210044, Peoples R China
[5] Tibet Meteorol Serv, Tibet Field Stn Sci Observat & Res Atmospher Water, Xigaze & Medog Natl Climate Observ, Lhasa 850000, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; GROWTH-RATE; SOIL-MOISTURE; WATER FLUXES; CARBON; VARIABILITY; ECOSYSTEMS; MODEL; ENSO; TELECONNECTIONS; CLIMATE;
D O I
10.5194/bg-21-5027-2024
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Gross primary production (GPP), a crucial component in the terrestrial carbon cycle, is strongly influenced by large-scale circulation patterns. This study explores the influence of the El Ni & ntilde;o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's GPP, utilizing long-term GPP data generated by the Boreal Ecosystem Productivity Simulator (BEPS). Partial correlation coefficients between GPP and ENSO reveal substantial negative associations in most parts of western and northern China during the September-October-November (SON) period of ENSO development. These correlations shift to strongly positive over southern China in December-January-February (DJF) and then weaken in March-April-May (MAM) in the following year, eventually turning generally negative over southwestern and northeastern China in June-July-August (JJA). In contrast, the relationship between GPP and IOD basically exhibits opposite seasonal patterns. Composite analysis further confirms these seasonal GPP anomalous patterns. Mechanistically, these variations are predominantly controlled by soil moisture during ENSO events (except MAM) and by temperature during IOD events (except SON). Quantitatively, China's annual GPP demonstrates modest positive anomalies in La Ni & ntilde;a and negative IOD years, in contrast to minor negative anomalies in El Ni & ntilde;o and positive IOD years. This outcome is due to counterbalancing effects, with significantly larger GPP anomalies occurring in DJF and JJA. Additionally, the relative changes in total GPP anomalies at the provincial scale display an east-west pattern in annual variation, while the influence of IOD events on GPP presents an opposing north-south pattern. We believe that this study can significantly enhance our understanding of specific processes by which large-scale circulation influences climate conditions and, in turn, affects China's GPP.
引用
收藏
页码:5027 / 5043
页数:17
相关论文
共 63 条
[21]   Balancing the global carbon budget [J].
Houghton, R. A. .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2007, 35 (313-347) :313-347
[22]   Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons [J].
Huang, Boyin ;
Thorne, Peter W. ;
Banzon, Viva F. ;
Boyer, Tim ;
Chepurin, Gennady ;
Lawrimore, Jay H. ;
Menne, Matthew J. ;
Smith, Thomas M. ;
Vose, Russell S. ;
Zhang, Huai-Min .
JOURNAL OF CLIMATE, 2017, 30 (20) :8179-8205
[23]   Soil moisture-atmosphere feedback dominates land carbon uptake variability [J].
Humphrey, Vincent ;
Berg, Alexis ;
Ciais, Philippe ;
Gentine, Pierre ;
Jung, Martin ;
Reichstein, Markus ;
Seneviratne, Sonia I. ;
Frankenberg, Christian .
NATURE, 2021, 592 (7852) :65-+
[24]   Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage [J].
Humphrey, Vincent ;
Zscheischler, Jakob ;
Ciais, Philippe ;
Gudmundsson, Lukas ;
Sitch, Stephen ;
Seneviratne, Sonia I. .
NATURE, 2018, 560 (7720) :628-+
[25]   Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data [J].
Joiner, Joanna ;
Yoshida, Yasuko ;
Zhang, Yao ;
Duveiller, Gregory ;
Jung, Martin ;
Lyapustin, Alexei ;
Wang, Yujie ;
Tucker, Compton J. .
REMOTE SENSING, 2018, 10 (09)
[26]   Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest [J].
Ju, Weimin ;
Chen, Jing M. ;
Black, T. Andrew ;
Barr, Alan G. ;
Liu, Jane ;
Chen, Baozhang .
AGRICULTURAL AND FOREST METEOROLOGY, 2006, 140 (1-4) :136-151
[27]   Compensatory water effects link yearly global land CO2 sink changes to temperature [J].
Jung, Martin ;
Reichstein, Markus ;
Schwalm, Christopher R. ;
Huntingford, Chris ;
Sitch, Stephen ;
Ahlstrom, Anders ;
Arneth, Almut ;
Camps-Valls, Gustau ;
Ciais, Philippe ;
Friedlingstein, Pierre ;
Gans, Fabian ;
Ichii, Kazuhito ;
Ain, Atul K. J. ;
Kato, Etsushi ;
Papale, Dario ;
Poulter, Ben ;
Raduly, Botond ;
Rodenbeck, Christian ;
Tramontana, Gianluca ;
Viovy, Nicolas ;
Wang, Ying-Ping ;
Weber, Ulrich ;
Zaehle, Sonke ;
Zeng, Ning .
NATURE, 2017, 541 (7638) :516-520
[28]   Intensification of terrestrial carbon cycle related to El Nino-Southern Oscillation under greenhouse warming [J].
Kim, Jin-Soo ;
Kug, Jong-Seong ;
Jeong, Su-Jong .
NATURE COMMUNICATIONS, 2017, 8
[29]  
Lan X., 2022, Global Monitoring Laboratory data set, DOI [10.15138/9N0H-ZH07, DOI 10.15138/9N0H-ZH07]
[30]   Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design [J].
Li, Xin ;
Cheng, Guodong ;
Liu, Shaomin ;
Xiao, Qing ;
Ma, Mingguo ;
Jin, Rui ;
Che, Tao ;
Liu, Qinhuo ;
Wang, Weizhen ;
Qi, Yuan ;
Wen, Jianguang ;
Li, Hongyi ;
Zhu, Gaofeng ;
Guo, Jianwen ;
Ran, Youhua ;
Wang, Shuoguo ;
Zhu, Zhongli ;
Zhou, Jian ;
Hu, Xiaoli ;
Xu, Ziwei .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (08) :1145-1160