TIMP2-mediated mitochondrial fragmentation and glycolytic reprogramming drive renal fibrogenesis following ischemia-reperfusion injury

被引:0
|
作者
Pang, Jingjing [1 ,2 ]
Xu, Dongxue [1 ,2 ]
Zhang, Xiaoyu [1 ,2 ]
Qu, Jiacheng [1 ,2 ]
Jiang, Jun [1 ,2 ]
Suo, Jinmeng [1 ,2 ]
Li, Tianlong [1 ,2 ]
Li, Yiming [1 ,2 ]
Peng, Zhiyong [2 ,3 ,4 ]
机构
[1] Wuhan Univ, Dept Crit Care Med, Zhongnan Hosp, Wuhan, Peoples R China
[2] Clin Res Ctr Hubei Crit Care Med, Wuhan, Peoples R China
[3] Univ Pittsburgh, Dept Crit Care Med, Pittsburgh, PA USA
[4] Hainan Med Coll, Affiliated Hosp 2, Intens Care Unit, Haikou, Hainan, Peoples R China
关键词
TISSUE INHIBITOR; KIDNEY FIBROSIS; EXPRESSION; DYSFUNCTION; DEFICIENCY; PROTEIN; PFKFB3; MOUSE; CELLS;
D O I
10.1016/j.freeradbiomed.2025.02.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acute kidney injury (AKI) triggers renal structural and functional abnormalities through inflammatory and fibrotic signaling pathways, ultimately progressing to chronic kidney disease (CKD). The mechanisms underlying AKI-to-CKD transition are complex, with hypoxia, mitochondrial dysfunction, and metabolic reprogramming as critical contributors. Public data analysis demonstrated significant upregulation of tissue inhibitors of metalloproteinases (Timp2) in renal biopsy tissues of CKD patients. In both ischemia/reperfusion (I/R) and unilateral ureteral obstruction (UUO) models, Timp2 upregulation was observed. Tubule-specific Timp2 knockout markedly attenuated renal fibrosis. RNA-sequencing revealed Timp2's association with mitochondrial dynamics and glycolysis in I/R mice. Timp2 deletion improved mitochondrial morphology and suppressed glycolytic enzyme expression. In vitro, TGF-beta 1-treated Timp2-knockdown HK-2 cells exhibited inhibited Drp1 expression, restored Mfn2 levels, alleviated mitochondrial fragmentation, and elevated mitochondrial membrane potential. Additionally, Pfkfb3 and HIF-1 alpha were down- regulated, accompanied by reduced extracellular acidification rate (ECAR), PFK activity, and lactate production. Mechanistically, Timp2 interacts with the extra- cellular domain of Sdc4 in an autocrine manner, activating the Hedgehog (Hh) signaling pathway. Cyclopamine partially rescued Timp2 overexpression-induced mitochondrial dysfunction, suppressed Pfkfb3-mediated glycolysis, and diminished collagen deposition. This study is the first to demonstrate that Timp2 in TECs exacerbates Hh signaling, promoting mitochondrial fragmentation and metabolic reprogramming to accelerate I/R-induced renal fibrosis.
引用
收藏
页码:244 / 259
页数:16
相关论文
共 50 条
  • [21] Pkd2 Dosage Influences Cellular Repair Responses following Ischemia-Reperfusion Injury
    Prasad, Sony
    McDaid, John Patrick
    Tam, Frederick Wai Keung
    Haylor, John Lionel
    Ong, Albert Chee Meng
    AMERICAN JOURNAL OF PATHOLOGY, 2009, 175 (04): : 1493 - 1503
  • [22] Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions
    Lobb, I.
    Jiang, J.
    Lian, D.
    Liu, W.
    Haig, A.
    Saha, M. N.
    Torregrossa, R.
    Wood, M. E.
    Whiteman, M.
    Sener, A.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2017, 17 (02) : 341 - 352
  • [23] MELATONIN ATTENUATES RENAL ISCHEMIA-REPERFUSION INJURY BY REGULATING MITOCHONDRIAL DYNAMICS AND AUTOPHAGY THROUGH AMPK/DRP1
    Wang, Huabin
    Li, Yi
    Cao, Xichao
    Niu, Heping
    Li, Xiaoran
    Wang, Jirong
    Yang, Jianwei
    Xu, Changhong
    Wang, Hailong
    Wan, Shun
    Li, Kunpeng
    Fu, Shengjun
    Yang, Li
    SHOCK, 2024, 62 (01): : 74 - 84
  • [24] Reprogramming monocytes into M2 macrophages as living drug depots to enhance treatment of myocardial ischemia-reperfusion injury
    Liu, Yan
    Zhou, Meiling
    Xu, Maochang
    Wang, Xueqin
    Zhang, Yingying
    Deng, Yiping
    Zhang, Zongquan
    Jiang, Jun
    Zhou, Xiangyu
    Li, Chunhong
    JOURNAL OF CONTROLLED RELEASE, 2024, 374 : 639 - 652
  • [25] Dexmedetomidine Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting MDH2 Lactylation via Regulating Metabolic Reprogramming
    She, Han
    Hu, Yi
    Zhao, Guozhi
    Du, Yunxia
    Wu, Yinyu
    Chen, Wei
    Li, Yong
    Wang, Yi
    Tan, Lei
    Zhou, Yuanqun
    Zheng, Jie
    Li, Qinghui
    Yan, Hong
    Mao, Qingxiang
    Zuo, Deyu
    Liu, Liangming
    Li, Tao
    ADVANCED SCIENCE, 2024,
  • [26] Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: the role of the AMPK-SIRT3 signaling pathway
    Yu, Li-Ming
    Dong, Xue
    Xue, Xiao-Dong
    Zhang, Jian
    Li, Zhi
    Wu, Hong-Jiang
    Yang, Zhong-Lu
    Yang, Yang
    Wang, Hui-Shan
    FOOD & FUNCTION, 2019, 10 (05) : 2752 - 2765
  • [27] Indoleamine 2,3-dioxygenase inhibition alters the non-coding RNA transcriptome following renal ischemia-reperfusion injury
    Merchen, Todd D.
    Boesen, Erika I.
    Gardner, John R.
    Harbarger, Rachel
    Kitamura, Eiko
    Mellor, Andrew
    Pollock, David M.
    Ghaffari, Arina
    Podolsky, Robert
    Nahman, N. Stanley, Jr.
    TRANSPLANT IMMUNOLOGY, 2014, 30 (04) : 140 - 144
  • [28] Proximal Tubule β2-Adrenergic Receptor Mediates Formoterol-Induced Recovery of Mitochondrial and Renal Function after Ischemia-Reperfusion Injury
    Cameron, Robert B.
    Gibbs, Whitney S.
    Miller, Siennah R.
    Dupre, Tess, V
    Megyesi, Judit
    Beeson, Craig C.
    Schnellmann, Rick G.
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2019, 369 (01): : 173 - 180
  • [29] DL-3-n-butylphthalide Attenuates Cerebral Ischemia-Reperfusion Injury by Inhibiting Mitochondrial Omi/HtrA2-Mediated Apoptosis
    Huang, Shuo
    He, Qianyan
    Sun, Xin
    Qu, Yang
    Abuduxukuer, Reziya
    Ren, Jiaxin
    Zhang, Kejia
    Yang, Yi
    Guo, Zhen-Ni
    CURRENT NEUROVASCULAR RESEARCH, 2023, 20 (01) : 101 - 111
  • [30] Knockout of Zeb2 ameliorates progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia-reperfusion injury
    Inotani, Satoshi
    Taniguchi, Yoshinori
    Nakamura, Keisyun
    Nishikawa, Hirofumi
    Matsumoto, Tatsuki
    Horino, Taro
    Fujimoto, Shimpei
    Sano, Shigetoshi
    Yanagita, Motoko
    Terada, Yoshio
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2022, 37 (03) : 454 - 468