Short-Term Power Load Forecasting Method Based on Improved Sparrow Search Algorithm, Variational Mode Decomposition, and Bidirectional Long Short-Term Memory Neural Network

被引:1
|
作者
Wen, Ming [1 ,2 ,3 ]
Liu, Bo [1 ]
Zhong, Hao [1 ]
Yu, Zongchao [2 ,3 ]
Chen, Changqing [4 ]
Yang, Xian [4 ]
Dai, Xueying [4 ]
Chen, Lisi [5 ]
机构
[1] China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Peoples R China
[2] State Grid Hunan Elect Power Co Ltd, Econ & Tech Res Inst, Changsha 410004, Peoples R China
[3] Hunan Key Lab Energy Internet Supply Demand & Oper, Changsha 410000, Peoples R China
[4] Hunan City Univ, Key Lab Smart City Energy Sensing & Edge Comp Huna, Yiyang 413000, Peoples R China
[5] Hunan Zhongdao New Energy Co Ltd, Yiyang 413000, Peoples R China
关键词
load forecasting; sparrow optimization algorithm; improved variational mode decomposition; BiLSTM; FAULT-DIAGNOSIS;
D O I
10.3390/en17215280
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A short-term power load forecasting method is proposed based on an improved Sparrow Search Algorithm (ISSA), Variational Mode Decomposition (VMD), and Bidirectional Long Short Term Memory (BiLSTM) neural network. First, the SSA is optimized by combining Tent chaotic mapping, reverse learning, and dynamic step adjustment strategy, and the VMD mode number and penalty factor are optimized by ISSA. Secondly, the initial load sequence is decomposed into several Intrinsic Mode Function (IMF) components using ISSA-VMD. The effective modal components are screened by Wasserstein Distance (WD) between IMF and the original signal probability density. Then, the effective modal components are reconstructed by the Improved Multi-scale Fast Sample Entropy (IMFSE) algorithm. Finally, the extracted features and IMF were input into the ISSA-BiLSTM model as input vectors for prediction.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Short-Term Power Load Forecasting Based on Empirical Mode Decomposition and Deep Neural Network
    Cheng, Limin
    Bao, Yuqing
    PROCEEDINGS OF 2019 INTERNATIONAL FORUM ON SMART GRID PROTECTION AND CONTROL (PURPLE MOUNTAIN FORUM), VOL II, 2020, 585 : 757 - 768
  • [22] A Novel Photovoltaic Power Prediction Method Based on a Long Short-Term Memory Network Optimized by an Improved Sparrow Search Algorithm
    Chen, Yue
    Li, Xiaoli
    Zhao, Shuguang
    ELECTRONICS, 2024, 13 (05)
  • [23] Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
    Chen, Quanchao
    Wen, Di
    Li, Xuqiang
    Chen, Dingjun
    Lv, Hongxia
    Zhang, Jie
    Gao, Peng
    PLOS ONE, 2019, 14 (09):
  • [24] Accurate ultra-short-term load forecasting based on load characteristic decomposition and convolutional neural network with bidirectional long short-term memory model
    Zhang, Mingyue
    Han, Yang
    Zalhaf, Amr S.
    Wang, Chaoyang
    Yang, Ping
    Wang, Congling
    Zhou, Siyu
    Xiong, Tianlong
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 35
  • [25] Informer Short-Term PV Power Prediction Based on Sparrow Search Algorithm Optimised Variational Mode Decomposition
    Xu, Wu
    Li, Dongyang
    Dai, Wenjing
    Wu, Qingchang
    ENERGIES, 2024, 17 (12)
  • [26] Short-term electricity load forecasting based on improved sparrow search algorithm with optimized BiLSTM
    Yang M.
    Zhang Y.
    Ai Y.
    Advanced Control for Applications: Engineering and Industrial Systems, 2024, 6 (02):
  • [27] Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
    Santra, Arpita Samanta
    Lin, Jun-Lin
    ENERGIES, 2019, 12 (11)
  • [28] Refining Short-Term Power Load Forecasting: An Optimized Model with Long Short-Term Memory Network
    Hu S.
    Cai W.
    Liu J.
    Shi H.
    Yu J.
    Journal of Computing and Information Technology, 2023, 31 (03) : 151 - 166
  • [29] Microgrid Load Forecasting Based on Improved Long Short-Term Memory Network
    Huang, Qiyue
    Zheng, Yuqing
    Xu, Yuxuan
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022
  • [30] A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm
    He, Feifei
    Zhou, Jianzhong
    Feng, Zhong-kai
    Liu, Guangbiao
    Yang, Yuqi
    APPLIED ENERGY, 2019, 237 : 103 - 116