Short-Term Power Load Forecasting Method Based on Improved Sparrow Search Algorithm, Variational Mode Decomposition, and Bidirectional Long Short-Term Memory Neural Network

被引:1
|
作者
Wen, Ming [1 ,2 ,3 ]
Liu, Bo [1 ]
Zhong, Hao [1 ]
Yu, Zongchao [2 ,3 ]
Chen, Changqing [4 ]
Yang, Xian [4 ]
Dai, Xueying [4 ]
Chen, Lisi [5 ]
机构
[1] China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Peoples R China
[2] State Grid Hunan Elect Power Co Ltd, Econ & Tech Res Inst, Changsha 410004, Peoples R China
[3] Hunan Key Lab Energy Internet Supply Demand & Oper, Changsha 410000, Peoples R China
[4] Hunan City Univ, Key Lab Smart City Energy Sensing & Edge Comp Huna, Yiyang 413000, Peoples R China
[5] Hunan Zhongdao New Energy Co Ltd, Yiyang 413000, Peoples R China
关键词
load forecasting; sparrow optimization algorithm; improved variational mode decomposition; BiLSTM; FAULT-DIAGNOSIS;
D O I
10.3390/en17215280
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A short-term power load forecasting method is proposed based on an improved Sparrow Search Algorithm (ISSA), Variational Mode Decomposition (VMD), and Bidirectional Long Short Term Memory (BiLSTM) neural network. First, the SSA is optimized by combining Tent chaotic mapping, reverse learning, and dynamic step adjustment strategy, and the VMD mode number and penalty factor are optimized by ISSA. Secondly, the initial load sequence is decomposed into several Intrinsic Mode Function (IMF) components using ISSA-VMD. The effective modal components are screened by Wasserstein Distance (WD) between IMF and the original signal probability density. Then, the effective modal components are reconstructed by the Improved Multi-scale Fast Sample Entropy (IMFSE) algorithm. Finally, the extracted features and IMF were input into the ISSA-BiLSTM model as input vectors for prediction.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Short-term power load forecasting based on sparrow search algorithm-variational mode decomposition and attention-long short-term memory
    Duan, Qinwei
    He, Xiangzhen
    Chao, Zhu
    Tang, Xuchen
    Li, Zugang
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 1089 - 1097
  • [2] Fusion of Improved Sparrow Search Algorithm and Long Short-Term Memory Neural Network Application in Load Forecasting
    Liao, Gwo-Ching
    ENERGIES, 2022, 15 (01)
  • [3] Short-Term Electricity Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Improved Sparrow Search Algorithm-Convolutional Neural Network-Bidirectional Long Short-Term Memory Model
    Qiu, Han
    Hu, Rong
    Chen, Jiaqing
    Yuan, Zihao
    MATHEMATICS, 2025, 13 (05)
  • [4] Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Tian, Xuan
    Fang, Shuai
    Cheng, Yulin
    Chang, Ying
    Liu, Haofan
    ENERGY, 2021, 214
  • [5] Study on Short-Term Electricity Load Forecasting Based on the Modified Simplex Approach Sparrow Search Algorithm Mixed with a Bidirectional Long- and Short-Term Memory Network
    Zhang, Chenjun
    Zhang, Fuqian
    Gou, Fuyang
    Cao, Wensi
    PROCESSES, 2024, 12 (09)
  • [6] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [7] Short-term wind speed forecasting based on two-stage preprocessing method, sparrow search algorithm and long short-term memory neural network
    Ai, Xueyi
    Li, Shijia
    Xu, Haoxuan
    ENERGY REPORTS, 2022, 8 : 14997 - 15010
  • [8] Short-term Wind Power Forecasting Using the Hybrid Model of Improved Variational Mode Decomposition and Maximum Mixture Correntropy Long Short-term Memory Neural Network
    Lu, Wenchao
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Fang, Shuai
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 144
  • [9] Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
    Wang, Yonggang
    Yao, Yilin
    Zou, Qiuying
    Zhao, Kaixing
    Hao, Yue
    SENSORS, 2024, 24 (12)
  • [10] Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm
    Zhu, Qingyun
    Zeng, Shunqi
    Chen, Minghui
    Wang, Fei
    Zhang, Zhen
    ELECTRONICS, 2024, 13 (15)