Passive on-chip isolators based on the thin-film lithium niobate platform

被引:0
作者
Liu, Jiacheng [1 ,2 ]
Xia, Gongyu [1 ,2 ]
Hong, Qilin [1 ,2 ]
Zhu, Pingyu [3 ,4 ]
Zhang, Kai-Kai [3 ,4 ]
Xia, Keyu [5 ,6 ]
Xu, Ping [3 ,4 ]
Qin, Shiqiao [1 ,2 ]
Zhu, Zhihong [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Hunan Prov Key Lab Novel Nano Optoelect Informat M, Changsha 410073, Peoples R China
[3] Natl Univ Def Technol, Coll Comp Sci & Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[4] Natl Univ Def Technol, Coll Comp Sci & Technol, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[5] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[6] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210023, Peoples R China
关键词
thin-film lithium niobate; Kerr effect; optical isolator; 42.82.-m; 42.82.Et; 42.65.Hw; OPTICAL ISOLATOR; CIRCULATORS; INTEGRATION;
D O I
10.1088/1674-1056/ada2ef
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical isolators, the photonic analogs of electronic diodes, are essential for ensuring the unidirectional flow of light in optical systems, thereby mitigating the destabilizing effects of back reflections. Thin-film lithium niobate (TFLN), hailed as "the silicon of photonics," has emerged as a pivotal material in the realm of chip-scale nonlinear optics, propelling the demand for compact optical isolators. We report a breakthrough in the development of a fully passive, integrated optical isolator on the TFLN platform, leveraging the Kerr effect to achieve an impressive 10.3 dB of isolation with a minimal insertion loss of 1.87 dB. Further theoretical simulations have demonstrated that our design, when applied to a microring resonator with a Q factor of 5 x 106, can achieve 20 dB of isolation with an input power of merely 8 mW. This advancement underscores the immense potential of lithium niobate-based Kerr-effect isolators in propelling the integration and application of high-performance on-chip lasers, heralding a new era in integrated photonics.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Linear isolators using wavelength conversion [J].
Abdelsalam, Kamal ;
Li, Tengfei ;
Khurgin, Jacob B. ;
Fathpour, Sasan .
OPTICA, 2020, 7 (03) :209-213
[2]   Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material [J].
Bhandare, S ;
Ibrahim, SK ;
Sandel, D ;
Zhang, HB ;
Wüst, F ;
Noé, R .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (02) :417-421
[3]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[4]   Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect [J].
Del Bino, Leonardo ;
Silver, Jonathan M. ;
Woodley, Michael T. M. ;
Stebbings, Sarah L. ;
Zhao, Xin ;
Del'Haye, Pascal .
OPTICA, 2018, 5 (03) :279-282
[5]  
Del L., 2017, Sci. Rep, V7, DOI [10.1038/srep43142, DOI 10.1038/SREP43142]
[6]   Silicon photonics broadband modulation-based isolator [J].
Doerr, C. R. ;
Chen, L. ;
Vermeulen, D. .
OPTICS EXPRESS, 2014, 22 (04) :4493-4498
[7]   Optical isolator using two tandem phase modulators [J].
Doerr, Christopher R. ;
Dupuis, Nicolas ;
Zhang, Liming .
OPTICS LETTERS, 2011, 36 (21) :4293-4295
[8]   Optical isolation using microring modulators [J].
Dostart, Nathan ;
Gevorgyan, Hayk ;
Onural, Deniz ;
Popovic, Milos A. .
OPTICS LETTERS, 2021, 46 (03) :460-463
[9]   Integrated optical devices for lab-on-a-chip biosensing applications [J].
Estevez, M-Carmen ;
Alvarez, Mar ;
Lechuga, Laura M. .
LASER & PHOTONICS REVIEWS, 2012, 6 (04) :463-487
[10]   Lithium niobate microring with ultra-high Q factor above 108 [J].
Gao, Renhong ;
Yao, Ni ;
Guan, Jianglin ;
Deng, Li ;
Lin, Jintian ;
Wang, Min ;
Qiao, Lingling ;
Fang, Wei ;
Cheng, Ya .
CHINESE OPTICS LETTERS, 2022, 20 (01)