Integrative prognostic modeling for stage III lung adenosquamous carcinoma post-tumor resection: machine learning insights and web-based implementation

被引:0
作者
Liang, Min [1 ,2 ]
Li, Peimiao [3 ]
Xie, Shangyu [2 ]
Huang, Xiaoying [2 ]
Li, Xiaocai [2 ]
Tan, Shifan [1 ]
机构
[1] Maoming Peoples Hosp, Dept Resp & Crit Care Med, Maoming, Peoples R China
[2] Maoming Peoples Hosp, Ctr Resp Res, Maoming, Peoples R China
[3] Kangmei Hosp, Dept Gen Internal Med, Puning, Peoples R China
来源
FRONTIERS IN SURGERY | 2024年 / 11卷
关键词
machine learning; prognosis; survival; adenosquamous carcinoma; primary tumor; resection; SQUAMOUS-CELL;
D O I
10.3389/fsurg.2024.1489040
中图分类号
R61 [外科手术学];
学科分类号
摘要
Introduction The prognostic landscape of stage III Lung Adenosquamous Carcinoma (ASC) following primary tumor resection remains underexplored. A thoughtfully developed prognostic model has the potential to guide clinicians in patient counseling and the formulation of effective therapeutic strategies.Methods Utilizing data from the Surveillance, Epidemiology, and End Results database spanning 2000 to 2018, this study identified independent prognostic factors influencing Overall Survival (OS) in ASC using Boruta analysis. Employing Gradient Boosting, Random Forest, and Neural Network algorithms, predictive models were constructed. Model performance was assessed through key metrics, including Area Under the Receiver Operating Characteristic Curve (AUC), calibration plot, Brier score, and Decision Curve Analysis (DCA).Results Among 241 eligible patients, seven clinical parameters-age, sex, primary tumor size, N stage, primary tumor site, chemotherapy, and systemic therapy-were identified as significant predictors of OS. Advanced age, male gender, larger tumor size, absence of chemotherapy, and lack of systemic therapy were associated with poorer survival. The Random Forest model outperformed others, achieving 3- and 5-year AUCs of 0.80/0.79 (training) and 0.74/0.65 (validation). It also demonstrated better calibration, lower Brier scores (training: 0.189/0.171; validation: 0.207/0.199), and more favorable DCA. SHAP values enhanced model interpretability by highlighting the impact of each parameter on survival predictions. To facilitate clinical application, the Random Forest model was deployed on a web-based server for accessible prognostic assessments.Conclusions This study presents a robust machine learning model and a web-based tool that assist healthcare practitioners in personalized clinical decision-making and treatment optimization for ASC patients following primary tumor resection.
引用
收藏
页数:14
相关论文
共 25 条
  • [1] The role of deep learning in diagnosing colorectal cancer
    Bousis, Dimitrios
    Verras, Georgios-Ioannis
    Bouchagier, Konstantinos
    Antzoulas, Andreas
    Panagiotopoulos, Ioannis
    Katinioti, Anastasia
    Kehagias, Dimitrios
    Kaplanis, Charalampos
    Kotis, Konstantinos
    Anagnostopoulos, Christos-Nikolaos
    Mulita, Francesk
    [J]. GASTROENTEROLOGY REVIEW-PRZEGLAD GASTROENTEROLOGICZNY, 2023, 18 (03): : 266 - 273
  • [2] Non-Small Cell Lung Cancer, Version 1.2020 Featured Updates to the NCCN Guidelines
    Ettinger, David S.
    Wood, Douglas E.
    Aggarwal, Charu
    Aisner, Dara L.
    Akerley, Wallace
    Bauman, Jessica R.
    Bharat, Ankit
    Bruno, Debora S.
    Chang, Joe Y.
    Chirieac, Lucian R.
    D'Amico, Thomas A.
    Dilling, Thomas J.
    Dobelbower, Michael
    Gettinger, Scott
    Govindan, Ramaswamy
    Gubens, Matthew A.
    Hennon, Mark
    Horn, Leora
    Lackner, Rudy P.
    Lanuti, Michael
    Leal, Ticiana A.
    Lin, Jules
    Loo, Billy W., Jr.
    Martins, Renato G.
    Otterson, Gregory A.
    Patel, Sandip P.
    Reckamp, Karen L.
    Riely, Gregory J.
    Schild, Steven E.
    Shapiro, Theresa A.
    Stevenson, James
    Swanson, Scott J.
    Tauer, Kurt W.
    Yang, Stephen C.
    Gregory, Kristina
    Hughes, Miranda
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2019, 17 (12): : 1464 - 1472
  • [3] Adenosquamous lung carcinomas: A histologic subtype with poor prognosis
    Filosso, Pier Luigi
    Ruffini, Enrico
    Asioli, Sofia
    Giobbe, Roberto
    Macri, Luigia
    Bruna, Maria Cristina
    Sandri, Alberto
    Oliaro, Alberto
    [J]. LUNG CANCER, 2011, 74 (01) : 25 - 29
  • [4] Prognosis and survival after radical resection of primary adenosquamous lung carcinoma
    Gawrychowski, J
    Brulinski, K
    Malinowski, E
    Papla, B
    [J]. EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2005, 27 (04) : 686 - 692
  • [5] GBD, 2019, Lancet Lond Engl, V2022, P563, DOI [10.1016/S0140-6736(22)01438-6, DOI 10.1016/S0140-6736(22)01438-6]
  • [6] Hsia JY, 1999, SCAND CARDIOVASC J, V33, P29
  • [7] ADENOSQUAMOUS CARCINOMA OF THE LUNG - CLINICOPATHOLOGICAL AND IMMUNOHISTOCHEMICAL FEATURES
    ISHIDA, T
    KANEKO, S
    YOKOYAMA, H
    INOUE, T
    SUGIO, K
    SUGIMACHI, K
    [J]. AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 1992, 97 (05) : 678 - 685
  • [8] Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019 A Systematic Analysis for the Global Burden of Disease Study 2019
    Kocarnik, Jonathan M.
    Compton, Kelly
    Dean, Frances E.
    Fu, Weijia
    Gaw, Brian L.
    Harvey, James D.
    Henrikson, Hannah Jacqueline
    Lu, Dan
    Pennini, Alyssa
    Xu, Rixing
    Ababneh, Emad
    Abbasi-Kangevari, Mohsen
    Abbastabar, Hedayat
    Abd-Elsalam, Sherief M.
    Abdoli, Amir
    Abedi, Aidin
    Abidi, Hassan
    Abolhassani, Hassan
    Adedeji, Isaac Akinkunmi
    Adnani, Qorinah Estiningtyas Sakilah
    Advani, Shailesh M.
    Afzal, Muhammad Sohail
    Aghaali, Mohammad
    Ahinkorah, Bright Opoku
    Ahmad, Sajjad
    Ahmad, Tauseef
    Ahmadi, Ali
    Ahmadi, Sepideh
    Rashid, Tarik Ahmed
    Salih, Yusra Ahmed
    Akalu, Gizachew Taddesse
    Aklilu, Addis
    Akram, Tayyaba
    Akunna, Chisom Joyqueenet
    Al Hamad, Hanadi
    Alahdab, Fares
    Al-Aly, Ziyad
    Ali, Saqib
    Alimohamadi, Yousef
    Alipour, Vahid
    Aljunid, Syed Mohamed
    Alkhayyat, Motasem
    Almasi-Hashiani, Amir
    Almasri, Nihad A.
    Al-Maweri, Sadeq Ali Ali
    Almustanyir, Sami
    Alonso, Nivaldo
    Alvis-Guzman, Nelson
    Amu, Hubert
    Anbesu, Etsay Woldu
    [J]. JAMA ONCOLOGY, 2022, 8 (03) : 420 - 444
  • [9] Adenosquamous carcinoma of the lung
    Li, Chenghui
    Lu, Hongyang
    [J]. ONCOTARGETS AND THERAPY, 2018, 11 : 4829 - 4835
  • [10] A nomogram to predict prognosis of patients with lung adenosquamous carcinoma: a population-based study
    Liang, Jiaqi
    Sui, Qihai
    Zheng, Yuansheng
    Bi, Guoshu
    Chen, Zhencong
    Li, Ming
    Huang, Yiwei
    Lu, Tao
    Zhan, Cheng
    Guo, Weigang
    [J]. JOURNAL OF THORACIC DISEASE, 2020, 12 (05) : 2288 - +