Bayesian estimation of stochastic volatility jump diffusion model parameters using S&P 500 and VIX data

被引:0
作者
Fullenbaum, Scott [1 ]
Hebner, Jackson [2 ]
Hwang, Dong Min [3 ]
Liebner, Jeffrey [4 ]
Lu, Qin [4 ]
Wine, Ashton [5 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA USA
[2] Univ Connecticut, Dept Math, Storrs, CT USA
[3] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA USA
[4] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[5] Xavier Univ, Dept Math, Cincinnati, OH USA
基金
美国国家科学基金会;
关键词
Stochastic volatility jump diffusion; VIX; Markov Chain Monte Carlo; Bayesian estimation; DYNAMICS;
D O I
10.1080/00949655.2024.2406957
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Stochastic Volatility Jump Diffusion (SVJD) model is a common tool used for option pricing. Existing literature has employed many techniques in order to estimate the parameters of this model, including both Bayesian and frequentist approaches. In 2010, Duan and Yeh [Jump and volatility risk premiums implied by VIX. J Econ Dyn Control. 2010;34(11):2232-2244] used a frequentist approach with maximum likelihood estimation that included the VIX, the Chicago Board Options Exchange (CBOE) Volatility Index, which carries real time S&P 500 option price information in addition to the S&P 500 data. In this paper, we combine the previous Bayesian approach in Cape et al. [Estimating Heston's and Bates' models parameters using Markov Chain Monte Carlo simulation. J Stat Comput Simul. 2015;85(11):2295-2314] with the inclusion of VIX by Duan and Yeh. We provide the derivations of the conditional posterior distributions of the SVJD model's parameters and a guide to a Markov Chain Monte Carlo (MCMC) algorithm used to estimate the parameters. We apply the algorithm to the historical S&P 500 and VIX data and provide the subsequent parameter estimates. We offer these tools for others performing similar research with our R code available upon request.
引用
收藏
页码:3957 / 3977
页数:21
相关论文
共 12 条
[1]  
Brenner M., 1989, Financ. Anal. J, V45, P61, DOI [DOI 10.2469/FAJ.V45.N4.61, 10.2469/faj.v45.n4.61]
[2]   Estimating Heston's and Bates' models parameters using Markov chain Monte Carlo simulation [J].
Cape, Joshua ;
Dearden, William ;
Gamber, William ;
Liebner, Jeffrey ;
Lu, Qin ;
Nguyen, M. Linh .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (11) :2295-2314
[3]   Jump and volatility risk premiums implied by VIX [J].
Duan, Jin-Chuan ;
Yeh, Chung-Ying .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2010, 34 (11) :2232-2244
[4]   The impact of jumps in volatility and returns [J].
Eraker, B ;
Johannes, M ;
Polson, N .
JOURNAL OF FINANCE, 2003, 58 (03) :1269-1300
[5]   THE PRICING OF OPTIONS ON ASSETS WITH STOCHASTIC VOLATILITIES [J].
HULL, J ;
WHITE, A .
JOURNAL OF FINANCE, 1987, 42 (02) :281-300
[6]   BAYESIAN-ANALYSIS OF STOCHASTIC VOLATILITY MODELS [J].
JACQUIER, E ;
POLSON, NG ;
ROSSI, PE .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1994, 12 (04) :371-389
[7]   Bayesian analysis of stochastic volatility models with fat-tails and correlated errors [J].
Jacquier, E ;
Polson, NG ;
Rossi, PE .
JOURNAL OF ECONOMETRICS, 2004, 122 (01) :185-212
[8]   Continuous-time VIX dynamics: On the role of stochastic volatility of volatility [J].
Kaeck, Andreas ;
Alexander, Carol .
INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2013, 28 :46-56
[9]   A Bayesian analysis of return dynamics with Levy jumps [J].
Li, Haitao ;
Wells, Martin T. ;
Yu, Cindy L. .
REVIEW OF FINANCIAL STUDIES, 2008, 21 (05) :2345-2378
[10]  
Mendoza AV., 2011, BAYESIAN ESTIMATION