Impact of composition on the thermophysical properties of (U,Zr)C solid solution Carbide fuels

被引:2
作者
Schaeperkoetter, J. [1 ]
Paisner, S. Widgeon [1 ]
Gonzales, A. [1 ]
White, J. [1 ]
Byler, D. [1 ]
Mcclellan, K.
Reynolds, J. [2 ]
Taylor, B. [2 ]
Rosales, J. [2 ]
Kardoulaki, E. [1 ]
机构
[1] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA
[2] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA
基金
美国国家航空航天局;
关键词
Nuclear; thermal; propulsion; fuel; THERMAL-CONDUCTIVITY; ZIRCONIUM CARBIDE; TITANIUM CARBIDE; URANIUM-CARBIDE; DIFFUSIVITY; ZR;
D O I
10.1016/j.jnucmat.2025.155669
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The use of uranium-zirconium carbide solid solutions in nuclear thermal propulsion (NTP) is promising due to their advantageous material properties. However, due to uranium enrichment limitations, it is crucial to understand how increased uranium content affects these properties. This study investigates the impact of varying uranium content on the thermophysical properties of substoichiometric uranium-zirconium carbide solid solutions, represented as (UyZr1-y)C, where y = 0.05, 0.1, 0.2, and 0.3. These compositions were synthesized through carbothermic reduction and densified using direct current sintering. Our phase characterization and elemental analysis underscore the necessity of using carbon-substoichiometric feedstock powders to accommodate carbon diffusion during processing. We report on the density, specific heat, and thermal diffusivity of these compositions up to 1473 K, revealing consistent trends across the compositional range. Calculated thermal conductivities from these properties, when extrapolated to NTP-relevant temperatures, show a significant decrease with increasing uranium content. This finding has critical implications for NTP fuel technology and underscores the need for further high-temperature studies.
引用
收藏
页数:9
相关论文
共 41 条
[1]   CARBON POSITIONS IN URANIUM CARBIDES [J].
AUSTIN, AE .
ACTA CRYSTALLOGRAPHICA, 1959, 12 (02) :159-161
[2]  
Bhattacharyya S.K., 2001, An Assessment of Fuels for Nuclear Thermal Propulsion
[3]  
Borowski S.K., 2009, Nuclear thermal rocket/vehicle characteristics and sensitivity trades for NASA's Mars design reference architecture (DRA) 5.0 study
[4]  
BROWNLEE LD, 1958, J I MET, V87, P58
[5]  
Burdi G., 1964, SNAP Technology Handbook: Refractory fuels and Cladding
[6]   THE U-ZR-C TERNARY PHASE-DIAGRAM ABOVE 2473-K [J].
BUTT, DP ;
WALLACE, TC .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (06) :1409-1419
[7]  
Carmack WJ, 2004, AIP CONF PROC, V699, P426, DOI 10.1063/1.1649602
[8]   URANIUM-CARBIDE - THERMAL-DIFFUSIVITY, THERMAL-CONDUCTIVITY AND SPECTRAL EMISSIVITY AT HIGH-TEMPERATURES [J].
DECONINCK, R ;
VANLIERDE, W ;
GIJS, A .
JOURNAL OF NUCLEAR MATERIALS, 1975, 57 (01) :69-76
[9]   Thermophysical properties of uranium dioxide [J].
Fink, JK .
JOURNAL OF NUCLEAR MATERIALS, 2000, 279 (01) :1-18
[10]   Hot hydrogen testing of Mo30W matrix surrogate cermets [J].
Gaffin, Neal D. ;
Palomares, Kelsa B. ;
Milner, Justin L. ;
Zinkle, Steven J. .
JOURNAL OF NUCLEAR MATERIALS, 2025, 603