Adaptive option pricing based on a posteriori error estimates for fully discrete finite difference methods

被引:0
作者
Mao, Mengli [1 ,2 ]
Wang, Wansheng [2 ]
Tian, Tianhai [3 ]
Wang, Lehan [4 ]
机构
[1] Changsha Univ, Sch Math, Changsha 410022, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Monash Univ, Sch Math, Clayton, Vic, Australia
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Partial integro-differential equations; a posteriori error estimate; Implicit-explicit time discretization; Finite difference method; European option pricing; Jump-diffusion model; Time-space adaptivity; CRANK-NICOLSON METHOD; JUMP-DIFFUSION; PARABOLIC PROBLEMS; ELEMENT METHODS; EQUATIONS; SCHEMES; VALUATION; MODELS;
D O I
10.1016/j.cam.2024.116407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the a posteriori error estimates of numerical methods for parabolic partial integro-differential equations (PIDEs) which describe jump-diffusion option pricing models in finance. Due to the non-smoothness of the payoff function, the initial singularity of the solution may arise and therefore a posteriori error control and adaptivity are of the utmost importance in numerically solving such type of equations. The implicit-explicit (IMEX) Euler and IMEX Crank-Nicolson Adams-Bashforth methods are used for the time discretization and a second order finite difference method is used for the space discretization. By using the continuous and piecewise reconstructions, the upper and lower bounds of the a posteriori error estimates for the fully discrete finite difference methods are derived, and these error bounds depend on the discretization parameters and the data of the model problems only. Based on these a posteriori error estimates, we further develop a spatial-temporal adaptive algorithm. Numerical experiments are performed with uniform partitions and time-space adaptivity. The new adaptive algorithm significantly reduces the computational cost and provides effective error control for the numerical solutions.
引用
收藏
页数:26
相关论文
共 43 条
[21]  
Jovanovic BS, 2014, SPR SER COMPUT MATH, V46, P1, DOI 10.1007/978-1-4471-5460-0
[22]  
K.J. in 't Hout, 2017, Numerical Partial Differential Equations in Finance Explained: An Introduction to Com-Putational Finance
[23]   Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models [J].
Kadalbajoo, Mohan K. ;
Tripathi, Lok Pati ;
Kumar, Alpesh .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) :979-1024
[24]   Multiscale methods for the valuation of American options with stochastic volatility [J].
Kunoth, Angela ;
Schneider, Christian ;
Wiechers, Katharina .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (09) :1145-1163
[25]   SECOND-ORDER FINITE DIFFERENCE METHOD FOR OPTION PRICING UNDER JUMP-DIFFUSION MODELS [J].
Kwon, Yonghoon ;
Lee, Younhee .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) :2598-2617
[26]   Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform [J].
Larsson, Elisabeth ;
Ahlander, Krister ;
Hall, Andreas .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (01) :175-192
[27]   AN ANISOTROPIC ERROR ESTIMATOR FOR THE CRANK-NICOLSON METHOD: APPLICATION TO A PARABOLIC PROBLEM [J].
Lozinski, Alexei ;
Picasso, Marco ;
Prachittham, Virabouth .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04) :2757-2783
[28]   A posteriori error estimates for fully discrete finite difference method for linear parabolic equations [J].
Mao, Mengli ;
Wang, Wansheng .
APPLIED NUMERICAL MATHEMATICS, 2024, 206 :111-140
[29]   A variable step-size extrapolated Crank-Nicolson method for option pricing under stochastic volatility model with jump [J].
Mao, Mengli ;
Tian, Hongjiong ;
Wang, Wansheng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) :762-781
[30]  
Matache A.M., 2004, IMA Preprint Series, V1954