High-voltage pH-decoupling aqueous redox flow batteries for future energy storage

被引:1
作者
Huo, Xiaoyu [1 ]
Shi, Xingyi [1 ]
Wang, Qing [1 ]
Zeng, Yikai [2 ]
An, Liang [1 ,3 ,4 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[2] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Sichuan, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Adv Mfg, Hung Hom, Kowloon, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Res Inst Smart Energy, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Redox Flow Battery; Aqueous Redox Flow Battery; Energy Storage; System; Renewable Energy; CHEMISTRY;
D O I
10.1016/j.coelec.2024.101633
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous redox flow batteries (ARFBs) have attracted lots of attention as powerful and durable technologies for sustainable energy storage. However, the wide adoptions of ARFBs still face the challenge of restrained voltage output due to the limited electrochemical stable window of water. As a prospective solution, the pH-decoupling strategy, which uses positive and negative electrolytes with different pH values, has been proven to overcome the thermodynamic limit of water and expand the operational voltage range of the ARFBs. This review outlines the recent advancements in different types of pH-decoupling ARFBs, including the two-chamber system, three-chamber system, and decoupled system with independent pH recovery function. The merits and technical challenges for being highlighted to assess the application potentials of each system design. Furthermore, insights for future research directions are provided to guide further system enhancement and promote the development of stable pHdecoupling ARFBs.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Challenges and possibilities for aqueous battery systems [J].
Ahn, Heeju ;
Kim, Daye ;
Lee, Minji ;
Nam, Kwan Woo .
COMMUNICATIONS MATERIALS, 2023, 4 (01)
[2]   Overview of energy storage in renewable energy systems [J].
Amrouche, S. Ould ;
Rekioua, D. ;
Rekioua, T. ;
Bacha, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) :20914-20927
[3]   A Review of Energy Storage Technologies' Application Potentials in Renewable Energy Sources Grid Integration [J].
Behabtu, Henok Ayele ;
Messagie, Maarten ;
Coosemans, Thierry ;
Berecibar, Maitane ;
Anlay Fante, Kinde ;
Kebede, Abraham Alem ;
Mierlo, Joeri Van .
SUSTAINABILITY, 2020, 12 (24) :1-20
[4]   Progresses and Perspectives of All-Iron Aqueous Redox Flow Batteries [J].
Belongia, Shawn ;
Wang, Xiang ;
Zhang, Xin .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
[5]  
Bui JC., 2024, NAT CHEM ENG, V1, P45, DOI [10.1038/s44286-023-00009-x, DOI 10.1038/S44286-023-00009-X]
[6]   Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits [J].
Chen, Ruiyong .
CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (01)
[7]   Low-Index Facet Polyhedron-Shaped Binary Cerium Titanium Oxide for High-Voltage Aqueous Zinc-Vanadium Redox Flow Batteries [J].
Choi, Jinyeong ;
Park, Joohyuk ;
Park, Jihan ;
Kim, Minsoo ;
Lee, Soobeom ;
Cho, Chae Ryong ;
Lee, Jin Hong ;
Park, Yiseul ;
Kim, Min Gyu ;
Choi, Jaewon ;
Park, Jun-Woo ;
Park, Minjoon .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) :55692-55702
[8]   A zinc-iron redox-flow battery under $100 per kW h of system capital cost [J].
Gong, Ke ;
Ma, Xiaoya ;
Conforti, Kameron M. ;
Kuttler, Kevin J. ;
Grunewald, Jonathan B. ;
Yeager, Kelsey L. ;
Bazant, Martin Z. ;
Gu, Shuang ;
Yan, Yushan .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2941-2945
[9]   A multiple ion-exchange membrane design for redox flow batteries [J].
Gu, Shuang ;
Gong, Ke ;
Yan, Emily Z. ;
Yan, Yushan .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2986-2998
[10]   Localized Water-In-Salt Electrolyte for Aqueous Lithium-Ion Batteries [J].
Jaumaux, Pauline ;
Yang, Xu ;
Zhang, Bao ;
Safaei, Javad ;
Tang, Xiao ;
Zhou, Dong ;
Wang, Chunsheng ;
Wang, Guoxiu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (36) :19965-19973