New EAQEC codes from LCP of codes over finite non-chain rings

被引:0
作者
Hu, Peng [1 ]
Liu, Xiusheng [2 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Hubei, Peoples R China
[2] Hubei Normal Univ, Coll Arts & Sci, Sch Sci & Technol, Huangshi 435109, Hubei, Peoples R China
关键词
EAQEC codes; LCP of codes; Constacyclic codes; QUANTUM MDS CODES; CYCLIC CODES; CONSTRUCTIONS; PAIRS;
D O I
10.1007/s11128-025-04687-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we first study the linear complementary pair (abbreviated to LCP) of codes over finite non-chain rings Ru,v,q=Fq+uFq+vFq+uvFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}={\mathbb {F}}_q+u{\mathbb {F}}_q+ v{\mathbb {F}}_q+uv{\mathbb {F}}_q$$\end{document} with u2=u,v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>2=u,v<^>2=v$$\end{document}. Then we provide a method of constructing entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes from an LCP of codes of length n over Ru,v,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}$$\end{document} using CSS. To enrich the variety of available EAQEC codes, some new EAQEC codes are given in the sense that their parameters are different from all the previous constructions.
引用
收藏
页数:17
相关论文
共 51 条
[11]   Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs [J].
Fang, Weijun ;
Fu, Fang-Wei ;
Li, Lanqiang ;
Zhu, Shixin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (06) :3527-3537
[12]   Some New Constructions of Quantum MDS Codes [J].
Fang, Weijun ;
Fu, Fang-Wei .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) :7840-7847
[13]   Entanglement-assisted quantum low-density parity-check codes [J].
Fujiwara, Yuichiro ;
Clark, David ;
Vandendriessche, Peter ;
De Boeck, Maarten ;
Tonchev, Vladimir D. .
PHYSICAL REVIEW A, 2010, 82 (04)
[14]   Entanglement-assisted quantum error-correcting codes over arbitrary finite fields [J].
Galindo, Carlos ;
Hernando, Fernando ;
Matsumoto, Ryutaroh ;
Ruano, Diego .
QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
[15]   New MDS EAQECCs derived from constacyclic codes over Fq2+vFq2 [J].
Gao, Jian ;
Zhang, Yaozong ;
Liu, Ying ;
Fu, Fang -Wei .
DISCRETE MATHEMATICS, 2023, 346 (09)
[16]   On optimal quantum codes [J].
Grassl, M ;
Beth, T ;
Rötteler, M .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) :55-64
[17]  
Guenda K, 2020, DESIGN CODE CRYPTOGR, V88, P133, DOI 10.1007/s10623-019-00676-z
[18]   Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction [J].
Hamada, Mitsuru .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) :5689-5704
[19]   Three classes of new EAQEC MDS codes [J].
Hu, Peng ;
Liu, Xiusheng .
QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
[20]   Quantum codes from the cyclic codes over Fp[u, v, w]/⟨u2-1, v2-1, w2-1, uv - vu, vw - wv, wu - uw⟩ [J].
Islam, Habibul ;
Prakash, Om .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) :625-635