New EAQEC codes from LCP of codes over finite non-chain rings

被引:0
作者
Hu, Peng [1 ]
Liu, Xiusheng [2 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Hubei, Peoples R China
[2] Hubei Normal Univ, Coll Arts & Sci, Sch Sci & Technol, Huangshi 435109, Hubei, Peoples R China
关键词
EAQEC codes; LCP of codes; Constacyclic codes; QUANTUM MDS CODES; CYCLIC CODES; CONSTRUCTIONS; PAIRS;
D O I
10.1007/s11128-025-04687-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we first study the linear complementary pair (abbreviated to LCP) of codes over finite non-chain rings Ru,v,q=Fq+uFq+vFq+uvFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}={\mathbb {F}}_q+u{\mathbb {F}}_q+ v{\mathbb {F}}_q+uv{\mathbb {F}}_q$$\end{document} with u2=u,v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>2=u,v<^>2=v$$\end{document}. Then we provide a method of constructing entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes from an LCP of codes of length n over Ru,v,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{u,v,q}$$\end{document} using CSS. To enrich the variety of available EAQEC codes, some new EAQEC codes are given in the sense that their parameters are different from all the previous constructions.
引用
收藏
页数:17
相关论文
共 51 条
[1]   On quantum and classical BCH codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) :1183-1188
[2]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[3]   Quantum codes from cyclic codes over Fq + uFq + vFq + uvFq [J].
Ashraf, Mohammad ;
Mohammad, Ghulam .
QUANTUM INFORMATION PROCESSING, 2016, 15 (10) :4089-4098
[4]  
Ball S., 2020, Des. Codes Cryptogr, V73, P417
[5]   Correcting quantum errors with entanglement [J].
Brun, Todd ;
Devetak, Igor ;
Hsieh, Min-Hsiu .
SCIENCE, 2006, 314 (5798) :436-439
[6]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[7]   On Linear Complementary Pairs of Codes [J].
Carlet, Claude ;
Guneri, Cem ;
Ozbudak, Ferruh ;
Ozkaya, Buket ;
Sole, Patrick .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) :6583-6589
[8]   LINEAR COMPLEMENTARY DUAL CODES AND DOUBLE CIRCULANT CODES OVER A SEMI-LOCAL RING [J].
Cheng, X. I. A. N. G. D. O. N. G. ;
Cao, X. I. W. A. N. G. ;
Qian, L. I. Q. I. N. .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (04) :1010-1021
[9]  
Ezerman MF, 2019, IEEE INT SYMP INFO, P2898, DOI 10.1109/ISIT.2019.8849416
[10]  
Fan JH, 2016, QUANTUM INF COMPUT, V16, P423