A Method for Retina Segmentation by Means of U-Net Network

被引:0
|
作者
Santone, Antonella [1 ]
De Vivo, Rosamaria [1 ]
Recchia, Laura [1 ]
Cesarelli, Mario [2 ]
Mercaldo, Francesco [1 ]
机构
[1] Univ Molise, Dept Med & Hlth Sci Vincenzo Tiberio, I-86100 Campobasso, Italy
[2] Univ Sannio, Dept Engn, I-82100 Benevento, Italy
关键词
retina; deep learning; segmentation; U-Net; healthcare;
D O I
10.3390/electronics13224340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Retinal image segmentation plays a critical role in diagnosing and monitoring ophthalmic diseases such as diabetic retinopathy and age-related macular degeneration. We propose a deep learning-based approach utilizing the U-Net network for the accurate and efficient segmentation of retinal images. U-Net, a convolutional neural network widely used for its performance in medical image segmentation, is employed to segment key retinal structures, including the optic disc and blood vessels. We evaluate the proposed model on a publicly available retinal image dataset, demonstrating interesting performance in automatic retina segmentation, thus showing the effectiveness of the proposed method. Our proposal provides a promising method for automated retinal image analysis, aiding in early disease detection and personalized treatment planning.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Design of Superpiexl U-Net Network for Medical Image Segmentation
    Wang H.
    Liu H.
    Guo Q.
    Deng K.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 1007 - 1017
  • [32] Segmentation Technology of Nucleus Image Based on U-Net Network
    Fang, Jie
    Zhou, QingBiao
    Wang, Shuxia
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [33] Estimation of Preterm Birth Markers with U-Net Segmentation Network
    Wlodarczyk, Tomasz
    Plotka, Szymon
    Trzcinski, Tomasz
    Rokita, Przemyslaw
    Sochacki-Wojcicka, Nicole
    Lipa, Michal
    Wojcicki, Jakub
    SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019, 2019, 11798 : 95 - 103
  • [34] Segmentation of lung parenchyma based on new U-NET network
    Cheng L.
    Jiang L.
    Wang X.
    Liu Z.
    Zhao S.
    International Journal of Wireless and Mobile Computing, 2022, 23 (02) : 173 - 182
  • [35] Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation
    Patel, Krushi
    Bur, Andres M.
    Wang, Guanghui
    2021 18TH CONFERENCE ON ROBOTS AND VISION (CRV 2021), 2021, : 181 - 188
  • [36] Nanoparticle Segmentation Based on U-Net Convolutional Neural Network
    Zhang Fang
    Wu Yue
    Xiao Zhitao
    Geng Lei
    Wu Jun
    Liu Yanbei
    Wang Wen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [37] Fuzzy U-Net Neural Network Design for Image Segmentation
    Kirichev, Mark
    Slavov, Todor
    Momcheva, Galina
    CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 177 - 184
  • [38] Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation
    Alfonso Francia, Gendry
    Pedraza, Carlos
    Aceves, Marco
    Tovar-Arriaga, Saul
    IEEE ACCESS, 2020, 8 : 38493 - 38500
  • [39] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [40] Wavelet U-Net: Incorporating Wavelet Transform Into U-Net for Liver Segmentation
    Chang, J.
    Chang, C.
    MEDICAL PHYSICS, 2021, 48 (06)