The enhancing effects of selenomethionine on harmine in attenuating pathological cardiac hypertrophy via glycolysis metabolism

被引:0
|
作者
Chen, Qi [1 ]
Wang, Wen-Yan [1 ]
Xu, Qing-Yang [1 ,2 ]
Dai, Yan-Fa [1 ]
Zhu, Xing-Yu [1 ]
Chen, Zhao-Yang [3 ]
Sun, Ning [1 ,2 ]
Leung, Chung-Hang [4 ]
Gao, Fei [5 ]
Wu, Ke-Jia [1 ]
机构
[1] Jiangnan Univ, Wuxi Sch Med, 1800 Lihu Ave, Wuxi 214122, Jiangsu, Peoples R China
[2] Fudan Univ, Sch Basic Med Sci, Dept Physiol & Pathophysiol, State Key Lab Med Neurobiol, Shanghai, Peoples R China
[3] Fujian Med Univ, Heart Ctr Fujian Prov, Dept Cardiol, Union Hosp, Fuzhou, Fujian, Peoples R China
[4] Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Macau, Peoples R China
[5] Capital Med Univ, Beijing An Zhen Hosp, Dept Cardiol, Beijing 100029, Peoples R China
关键词
cardiac hypertrophy; combination therapy; glycolysis metabolism; harmine; selenomethionine; TUMOR-NECROSIS-FACTOR; DYSFUNCTION; GENE; CARDIOMYOPATHY; TRANSITION; EXPRESSION; CYTOKINE; FIBROSIS; PROMOTES; PATHWAY;
D O I
10.1111/jcmm.70124
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Pathological cardiac hypertrophy, a common feature in various cardiovascular diseases, can be more effectively managed through combination therapies using natural compounds. Harmine, a beta-carboline alkaloid found in plants, possesses numerous pharmacological functions, including alleviating cardiac hypertrophy. Similarly, Selenomethionine (SE), a primary organic selenium source, has been shown to mitigate cardiac autophagy and alleviate injury. To explores the therapeutic potential of combining Harmine with SE to treat cardiac hypertrophy. The synergistic effects of SE and harmine against cardiac hypertrophy were assessed in vitro with angiotensin II (AngII)-induced hypertrophy and in vivo using a Myh6R404Q mouse model. Co-administration of SE and harmine significantly reduced hypertrophy-related markers, outperforming monotherapies. Transcriptomic and metabolic profiling revealed substantial alterations in key metabolic and signalling pathways, particularly those involved in energy metabolism. Notably, the combination therapy led to a marked reduction in the activity of key glycolytic enzymes. Importantly, the addition of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) did not further potentiate these effects, suggesting that the antihypertrophic action is predominantly mediated through glycolytic inhibition. These findings highlight the potential of SE and harmine as a promising combination therapy for the treatment of cardiac hypertrophy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Osteocrin alleviates cardiac hypertrophy via attenuating oxidative stress
    Ji, Mingyue
    Zuo, Zhi
    Zhang, Mengyuan
    Xu, Zhen
    Hu, Guoxin
    PEPTIDES, 2022, 152
  • [2] Downregulation of amphiregulin improves cardiac hypertrophy via attenuating oxidative stress and apoptosis
    Ji, Mingyue
    Liu, Yun
    Zuo, Zhi
    Xu, Cheng
    Lin, Li
    Li, Yong
    BIOLOGY DIRECT, 2022, 17 (01)
  • [3] Screening and Function Analysis of MicroRNAs Involved in Exercise Preconditioning-Attenuating Pathological Cardiac Hypertrophy
    Yang, Fan
    You, Xiaohua
    Xu, Tongyi
    Liu, Yang
    Ren, Yudan
    Liu, Suxuan
    Wu, Feng
    Xu, Zhiyun
    Zou, Liangjian
    Wang, Guokun
    INTERNATIONAL HEART JOURNAL, 2018, 59 (05) : 1069 - 1076
  • [4] Downregulation of amphiregulin improves cardiac hypertrophy via attenuating oxidative stress and apoptosis
    Mingyue Ji
    Yun Liu
    Zhi Zuo
    Cheng Xu
    Li Lin
    Yong Li
    Biology Direct, 17
  • [5] Mitochondrial biogenesis and energy metabolism in cardiac pathological aversus physiological hypertrophy
    Rimbaud, S.
    Barneoud, L.
    Sanchez, H.
    Fortin, D.
    Veksler, V.
    Bigard, X.
    Ventura-Clapier, R.
    Garnier, A.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2008, 44 (04) : 813 - 813
  • [6] Upregulation of Mitochondrial Atpase Inhibitory Factor 1 Mediates Increased Glycolysis in Pathological Cardiac Hypertrophy
    Zhou, Bo
    Caudal, Arianne
    Tang, Xiaoting
    Chavez, Juan D.
    Keller, Andrew
    Villet, Outi M.
    Kolwicz, Stephen C.
    Wang, Wang
    Bruce, James
    Tian, Rong
    CIRCULATION, 2020, 142
  • [7] Cardiac LXR protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
    Cannon, Megan V.
    Sillje, Herman H. W.
    Sijbesma, Jurgen W. A.
    Vreeswijk-Baudoin, Inge
    Ciapaite, Jolita
    van der Sluis, Bart
    van Deursen, Jan
    Silva, Gustavo J. J.
    de Windt, Leon J.
    Gustafsson, Jan-Ake
    van der Harst, Pim
    van Gilst, Wiek H.
    de Boer, Rudolf A.
    EMBO MOLECULAR MEDICINE, 2015, 7 (09) : 1229 - 1243
  • [8] Lactate regulates pathological cardiac hypertrophy via histone lactylation modification
    Zhao, Shuai-Shuai
    Liu, Jinlong
    Wu, Qi-Cai
    Zhou, Xue-Liang
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2024, 28 (16)
  • [9] Molecular mechanism of carvedilol in attenuating the reversion to fetal energy metabolism during cardiac hypertrophy development
    胡琴
    李隆贵
    Journal of Medical Colleges of PLA, 2003, (05) : 290 - 294
  • [10] REDD1 attenuates cardiac hypertrophy via enhancing autophagy
    Liu, Chen
    Xue, Ruicong
    Wu, Dexi
    Wu, Lingling
    Chen, Cong
    Tan, Weiping
    Chen, Yili
    Dong, Yugang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 454 (01) : 215 - 220