Optimizing Multi-path QUIC Protocol Performance in Cloud-Edge Collaboration through CPU Affinity and Kernel-Level Resource Scheduling
被引:0
|
作者:
Xia, Xiaohan
论文数: 0引用数: 0
h-index: 0
机构:
China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R ChinaChina United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Xia, Xiaohan
[1
]
Chen, Bin
论文数: 0引用数: 0
h-index: 0
机构:
China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R ChinaChina United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Chen, Bin
[1
]
Cai, Chao
论文数: 0引用数: 0
h-index: 0
机构:
China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R ChinaChina United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Cai, Chao
[1
]
Gao, Pei
论文数: 0引用数: 0
h-index: 0
机构:
China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R ChinaChina United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Gao, Pei
[1
]
Qiu, Jiahui
论文数: 0引用数: 0
h-index: 0
机构:
China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R ChinaChina United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Qiu, Jiahui
[1
]
Hou, Yinglong
论文数: 0引用数: 0
h-index: 0
机构:
China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R ChinaChina United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Hou, Yinglong
[1
]
机构:
[1] China United Network Commun Co Ltd, Intelligent Network Innovat Ctr, Beijing, Peoples R China
Multi-path QUIC;
CPU affinity;
Kernel-level Resource Scheduling;
Cloud-Edge Collaboration;
eBPF;
D O I:
10.1109/ICCC62479.2024.10681738
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This study investigates how optimizing CPU affinity and kernel-level resource scheduling can enhance the performance of the Multi-path QUIC (MPQUIC) protocol in cloud-edge collaboration. It explores the significance of CPU affinity for improving MPQUIC protocol performance and leverages extended Berkeley Packet Filter (eBPF) technology to implement a heuristic planning algorithm for achieving high-performance implementations. By adjusting CPU affinity, it effectively enhances the maximum throughput achievable by MPQUIC on a single core and the relationship between acceleration bandwidth and CPU consumption. Furthermore, combining eBPF technology's Scheduling algorithm further optimizes the protocol performance in cloud-edge environments. This research provides a new perspective and approach for optimizing the performance of Cloud-Edge Collaboration using MPQUIC.