Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma In Situ, Nodular Melanoma, and Superficial Spreading Melanoma: Part II

被引:0
作者
Lin, Teng-Li [1 ]
Karmakar, Riya [2 ]
Mukundan, Arvind [2 ]
Chaudhari, Sakshi [3 ]
Hsiao, Yu-Ping [4 ,5 ]
Hsieh, Shang-Chin [6 ]
Wang, Hsiang-Chen [2 ,7 ]
机构
[1] Dalin Tzu Chi Gen Hosp, Dept Dermatol, 2 Min Sheng Rd, Chiayi 62247, Taiwan
[2] Natl Chung Cheng Univ, Dept Mech Engn, 168 Univ Rd, Chiayi 62102, Taiwan
[3] Sanjivani Coll Engn, Dept Comp Sci, Stn Rd, Kopargaon 423603, Maharashtra, India
[4] Chung Shan Med Univ Hosp, Dept Dermatol, 110,Sec 1,Jianguo N Rd, Taichung 40201, Taiwan
[5] Chung Shan Med Univ, Inst Med, Sch Med, 110,Sec 1,Jianguo N Rd, Taichung 40201, Taiwan
[6] Kaohsiung Armed Forces Gen Hosp, Dept Surg, Div Gen Surg, 2 Zhongzheng 1st Rd, Kaohsiung 80284, Taiwan
[7] Hitspectra Intelligent Technol Co Ltd, Kaohsiung 80661, Taiwan
关键词
skin cancer; acral lentiginous melanoma; melanoma in situ; nodular melanoma; superficial spreading melanoma; hyperspectral imaging; band selection; spectrum-aided visual enhancer; MALIGNA MELANOMA; SKIN-CANCER; CLASSIFICATION; DIAGNOSIS;
D O I
10.3390/diagnostics15060714
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Melanoma, a highly aggressive form of skin cancer, necessitates early detection to significantly improve survival rates. Traditional diagnostic techniques, such as white-light imaging (WLI), are effective but often struggle to differentiate between melanoma subtypes in their early stages. Methods: The emergence of the Spectrum-Aided Vison Enhancer (SAVE) offers a promising alternative by utilizing specific wavelength bands to enhance visual contrast in melanoma lesions. This technique facilitates greater differentiation between malignant and benign tissues, particularly in challenging cases. In this study, the efficacy of the SAVE is evaluated in detecting melanoma subtypes including acral lentiginous melanoma (ALM), melanoma in situ (MIS), nodular melanoma (NM), and superficial spreading melanoma (SSM) compared to WLI. Results: The findings demonstrated that the SAVE consistently outperforms WLI across various key metrics, including precision, recall, F1-scorw, and mAP, making it a more reliable tool for early melanoma detection using the four different machine learning methods YOLOv10, Faster RCNN, Scaled YOLOv4, and YOLOv7. Conclusions: The ability of the SAVE to capture subtle spectral differences offers clinicians a new avenue for improving diagnostic accuracy and patient outcomes.
引用
收藏
页数:16
相关论文
共 58 条
[1]   Acral melanoma detection using dermoscopic images and convolutional neural networks [J].
Abbas, Qaiser ;
Ramzan, Farheen ;
Ghani, Muhammad Usman .
VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2021, 4 (01)
[2]   Skin cancer and photoprotection in people of color: A review and recommendations for physicians and the public [J].
Agbai, Oma N. ;
Buster, Kesha ;
Sanchez, Miguel ;
Hernandez, Claudia ;
Kundu, Roopal V. ;
Chiu, Melvin ;
Roberts, Wendy E. ;
Draelos, Zoe D. ;
Bhushan, Reva ;
Taylor, Susan C. ;
Lim, Henry W. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2014, 70 (04) :748-762
[3]  
Al-Dabbagh J., 2022, IJS Short Rep, V7, pe62, DOI [10.1097/SR9.0000000000000062, DOI 10.1097/SR9.0000000000000062]
[4]   Fractional differentiation based image enhancement for automatic detection of malignant melanoma [J].
Anber, Basmah ;
Yurtkan, Kamil .
BMC MEDICAL IMAGING, 2024, 24 (01)
[5]   Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches [J].
Apalla, Zoe ;
Nashan, Dorothee ;
Weller, Richard B. ;
Castellsague, Xavier .
DERMATOLOGY AND THERAPY, 2017, 7 :S5-S19
[6]   The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation [J].
Chicco, Davide ;
Jurman, Giuseppe .
BMC GENOMICS, 2020, 21 (01)
[7]   Machine Learning and Its Application in Skin Cancer [J].
Das, Kinnor ;
Cockerell, Clay J. ;
Patil, Anant ;
Pietkiewicz, Pawel ;
Giulini, Mario ;
Grabbe, Stephan ;
Goldust, Mohamad .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (24)
[8]   Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement [J].
Davidson, Karina W. ;
Barry, Michael J. ;
Mangione, Carol M. ;
Cabana, Michael ;
Caughey, Aaron B. ;
Davis, Esa M. ;
Donahue, Katrina E. ;
Doubeni, Chyke A. ;
Krist, Alex H. ;
Kubik, Martha ;
Li, Li ;
Ogedegbe, Gbenga ;
Owens, Douglas K. ;
Pbert, Lori ;
Silverstein, Michael ;
Stevermer, James ;
Tseng, Chien-Wen ;
Wong, John B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 325 (19) :1965-1977
[9]   Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review [J].
East, James E. ;
Vleugels, Jasper L. ;
Roelandt, Philip ;
Bhandari, Pradeep ;
Bisschops, Raf ;
Dekker, Evelien ;
Hassan, Cesare ;
Horgan, Gareth ;
Kiesslich, Ralf ;
Longcroft-Wheaton, Gaius ;
Wilson, Ana ;
Dumonceau, Jean-Marc .
ENDOSCOPY, 2016, 48 (11) :1029-1045
[10]  
ElMasry G., 2010, Hyperspectral imaging for food quality analysis and control, P3, DOI DOI 10.1016/B978-0-12-374753-2.10001-2