Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping

被引:1
|
作者
Adrah, Esmaeel [1 ]
Wong, Jesse Pan [1 ]
Yin, He [1 ]
机构
[1] Kent State Univ, Dept Geog, 325 S Lincoln St, Kent, OH 44242 USA
关键词
Permanent crops; Space LiDAR; Multi-sensor imagery; Time-weighted dynamic time warping (TW-DTW); Mediterranean; TIME-SERIES; LAND-USE; FRUIT; CLASSIFICATION; AREA; SATELLITE; ACCURACY; ORCHARDS; INDEXES; CARBON;
D O I
10.1016/j.rse.2025.114644
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping tree crops is essential for resource management and supporting local livelihoods and ecosystem services. However, tree crops are often overlooked or misclassified in regional and global cropland maps. Employing multi-sensor imagery presents new opportunities for mapping tree crops by providing additional observations and distinct characteristics. Nevertheless, challenges regarding the scarcity of ground references and the lack of robust approaches to integrating multi-sensor imagery pose obstacles to the production of reliable tree crop maps. Herein, we evaluate the integration of the Global Ecosystem Dynamic Investigation (GEDI) LiDAR with Sentinel-2 and Sentinel-1 to facilitate tree crops mapping in the eastern Mediterranean region (including Syria, part of Turkey, and Jordan) and southern France. First, we systematically filtered the GEDI relative heights (RH) metrics and above-ground biomass density (AGBD) using ancillary data (e.g., cloud, topography, land cover) and applied spatial constraints to combine the high-quality GEDI shots with Sentinel-2 normalized difference vegetation index (NDVI) and Sentinel-1 VV and VH backscatter. Second, we used Time-Weighted Dynamic Time Warping (TW-DTW) and random forest (RF) models to test the classification performance using different combinations of input features at the GEDI footprint level. Finally, we used GEDI footprint level classification as training samples to train RF classifiers to generate wall-to-wall tree crops maps using a combined Sentinel-2 and Sentinel-1 imagery composite. We found that, at the GEDI footprint level, using GEDI variables only, we achieved an F1 score of 73-78 % for tree crops, approximately 4-10 % higher compared to that using Sentinel-2 and Sentinel-1 imagery for classification. However, by combining GEDI with Sentinel-2 and Sentinel-1 imagery, we achieved the highest accuracy (F1 score: 73-86 %) at the GEDI footprint level classification. The mapping accuracy of our wall-to-wall map varied across different agroclimatic zones with higher accuracy in dryer regions reaching up to 91 % and lowest at 69 %. Our finding demonstrates the value of using structural information from the GEDI data to map tree crops across different agroclimatic zones. Our study emphasizes the importance of tree crops in regional maps and offers insights to support the efforts to integrate data from multiple remote sensing platforms.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Using Sentinel-1, Sentinel-2, and Planet Imagery to Map Crop Type of Smallholder Farms
    Rao, Preeti
    Zhou, Weiqi
    Bhattarai, Nishan
    Srivastava, Amit K.
    Singh, Balwinder
    Poonia, Shishpal
    Lobell, David B.
    Jain, Meha
    REMOTE SENSING, 2021, 13 (10)
  • [42] FARM: A fully automated rice mapping framework combining Sentinel-1 SAR and Sentinel-2 multi-temporal imagery
    Gao, Yuan
    Pan, Yaozhong
    Zhu, Xiufang
    Li, Le
    Ren, Shoujia
    Zhao, Chuanwu
    Zheng, Xuechang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [43] Mapping Field Crops Sentinel-2 satellite
    不详
    CURRENT SCIENCE, 2020, 119 (06): : 890 - 891
  • [44] Mapping Mediterranean seagrasses with Sentinel-2 imagery
    Traganos, Dimosthenis
    Reinartz, Peter
    MARINE POLLUTION BULLETIN, 2018, 134 : 197 - 209
  • [45] Aboveground Biomass Mapping in SemiArid Forests by Integrating Airborne LiDAR with Sentinel-1 and Sentinel-2 Time-Series Data
    Zhang, Linjing
    Yin, Xinran
    Wang, Yaru
    Chen, Jing
    REMOTE SENSING, 2024, 16 (17)
  • [46] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [47] Irrigation Detection Using Sentinel-1 and Sentinel-2 Time Series on Fruit Tree Orchards
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2024, 16 (03)
  • [48] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [49] Quantifying Temperate Forest Diversity by Integrating GEDI LiDAR and Multi-Temporal Sentinel-2 Imagery
    Ren, Chunying
    Jiang, Hailing
    Xi, Yanbiao
    Liu, Pan
    Li, Huiying
    REMOTE SENSING, 2023, 15 (02)
  • [50] Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data
    Elwan, Ehsan
    Le Page, Michel
    Jarlan, Lionel
    Baghdadi, Nicolas
    Brocca, Luca
    Modanesi, Sara
    Dari, Jacopo
    Quintana Segui, Pere
    Zribi, Mehrez
    WATER, 2022, 14 (05)