Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping

被引:1
|
作者
Adrah, Esmaeel [1 ]
Wong, Jesse Pan [1 ]
Yin, He [1 ]
机构
[1] Kent State Univ, Dept Geog, 325 S Lincoln St, Kent, OH 44242 USA
关键词
Permanent crops; Space LiDAR; Multi-sensor imagery; Time-weighted dynamic time warping (TW-DTW); Mediterranean; TIME-SERIES; LAND-USE; FRUIT; CLASSIFICATION; AREA; SATELLITE; ACCURACY; ORCHARDS; INDEXES; CARBON;
D O I
10.1016/j.rse.2025.114644
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping tree crops is essential for resource management and supporting local livelihoods and ecosystem services. However, tree crops are often overlooked or misclassified in regional and global cropland maps. Employing multi-sensor imagery presents new opportunities for mapping tree crops by providing additional observations and distinct characteristics. Nevertheless, challenges regarding the scarcity of ground references and the lack of robust approaches to integrating multi-sensor imagery pose obstacles to the production of reliable tree crop maps. Herein, we evaluate the integration of the Global Ecosystem Dynamic Investigation (GEDI) LiDAR with Sentinel-2 and Sentinel-1 to facilitate tree crops mapping in the eastern Mediterranean region (including Syria, part of Turkey, and Jordan) and southern France. First, we systematically filtered the GEDI relative heights (RH) metrics and above-ground biomass density (AGBD) using ancillary data (e.g., cloud, topography, land cover) and applied spatial constraints to combine the high-quality GEDI shots with Sentinel-2 normalized difference vegetation index (NDVI) and Sentinel-1 VV and VH backscatter. Second, we used Time-Weighted Dynamic Time Warping (TW-DTW) and random forest (RF) models to test the classification performance using different combinations of input features at the GEDI footprint level. Finally, we used GEDI footprint level classification as training samples to train RF classifiers to generate wall-to-wall tree crops maps using a combined Sentinel-2 and Sentinel-1 imagery composite. We found that, at the GEDI footprint level, using GEDI variables only, we achieved an F1 score of 73-78 % for tree crops, approximately 4-10 % higher compared to that using Sentinel-2 and Sentinel-1 imagery for classification. However, by combining GEDI with Sentinel-2 and Sentinel-1 imagery, we achieved the highest accuracy (F1 score: 73-86 %) at the GEDI footprint level classification. The mapping accuracy of our wall-to-wall map varied across different agroclimatic zones with higher accuracy in dryer regions reaching up to 91 % and lowest at 69 %. Our finding demonstrates the value of using structural information from the GEDI data to map tree crops across different agroclimatic zones. Our study emphasizes the importance of tree crops in regional maps and offers insights to support the efforts to integrate data from multiple remote sensing platforms.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MAPPING FOREST VERTICAL STRUCTURE ATTRIBUTES WITH GEDI, SENTINEL-1, AND SENTINEL-2
    Tsutsumida, Narumasa
    Kato, Akira
    Osawa, Takeshi
    Doi, Hideyuki
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 538 - 541
  • [2] Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal Agricultural Crop Mapping
    Valero, Silvia
    Arnaud, Ludovic
    Planells, Milena
    Ceschia, Eric
    REMOTE SENSING, 2021, 13 (23)
  • [3] Wall-to-wall mapping of tree extent in the tropics with Sentinel-1 and Sentinel-2
    Brandt, John
    Ertel, Jessica
    Spore, Justine
    Stolle, Fred
    REMOTE SENSING OF ENVIRONMENT, 2023, 292
  • [4] Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data
    Liu, Xiang
    Frey, Julian
    Munteanu, Catalina
    Still, Nicole
    Koch, Barbara
    REMOTE SENSING OF ENVIRONMENT, 2023, 292
  • [5] A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery
    Xun, Lan
    Zhang, Jiahua
    Cao, Dan
    Yang, Shanshan
    Yao, Fengmei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 181 : 148 - 166
  • [6] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [7] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [8] Machine Learning-Based Summer Crops Mapping Using Sentinel-1 and Sentinel-2 Images
    Maleki, Saeideh
    Baghdadi, Nicolas
    Bazzi, Hassan
    Dantas, Cassio Fraga
    Ienco, Dino
    Nasrallah, Yasser
    Najem, Sami
    REMOTE SENSING, 2024, 16 (23)
  • [9] Enhancing Wetland Mapping: Integrating Sentinel-1/2, GEDI Data, and Google Earth Engine
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric W.
    Mohammadimanesh, Fariba
    SENSORS, 2024, 24 (05)
  • [10] Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium
    Van Tricht, Kristof
    Gobin, Anne
    Gilliams, Sven
    Piccard, Isabelle
    REMOTE SENSING, 2018, 10 (10)