A supplement to the large deviations of infinite weighted sums of heavy tailed random variables

被引:0
作者
Shi, Jianan [1 ]
Yu, Zhenhong [1 ]
Miao, Yu [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Math & Stat, Xinxiang 453007, Henan Province, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan Province, Peoples R China
基金
中国国家自然科学基金;
关键词
Independent identically distributed random; variables; Large deviations; Heavy tails; Weighted sums;
D O I
10.1016/j.spl.2024.110306
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let { X , Xn, n >= 1} be a sequence of independent and identically distributed non-negative random variables with heavy tails and { a i ( n ) , i >= 1 , n >= 1} be an array of non-negative numbers. In the present paper, we study the large deviation of infinite weighted sums & sum; infinity i =1 ai(n)Xi, which is a supplement of Aurzada (2020).
引用
收藏
页数:8
相关论文
共 13 条
[2]  
Bonin O., 2003, Probab. Math. Statist., V23, P357
[3]   LARGE DEVIATION THEOREM FOR WEIGHTED SUMS [J].
BOOK, SA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (01) :43-49
[4]   LARGE DEVIATION PROBABILITIES FOR WEIGHTED SUMS [J].
BOOK, SA .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04) :1221-&
[5]   Asymptotic expansion of the distribution density function for the sum of random variables in the series scheme in large deviation zones [J].
Deltuviene, D ;
Saulis, L .
ACTA APPLICANDAE MATHEMATICAE, 2003, 78 (1-3) :87-97
[6]  
Dembo A., 1998, Large Deviations Techniques and Applications, DOI DOI 10.1007/978-1-4612-5320-4
[7]   Large deviations for weighted sums of stretched exponential random variables [J].
Gantert, Nina ;
Ramanan, Kavita ;
Rembart, Franz .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 :1-14
[8]  
Giuliano R, 2012, ANN MATH INFORM, V39, P109
[9]   Large deviation principles for sequences of logarithmically weighted means [J].
Giuliano, Rita ;
Macci, Claudio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :555-570
[10]   A large deviation principle for weighted sums of independent identically distributed random variables [J].
Kiesel, R ;
Stadtmüller, U .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :929-939