Near-field-driven thermal phonon lasing

被引:0
作者
Karwat, P. [1 ,2 ,3 ]
Bello, F. D. [1 ,2 ]
Clarke, D. D. A. [1 ,2 ]
Paslawski, G. [3 ]
Hess, O. [1 ,2 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin, Ireland
[2] Trinity Coll Dublin, CRANN Inst, Dublin, Ireland
[3] Wroclaw Univ Sci & Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
基金
爱尔兰科学基金会;
关键词
AMPLIFICATION;
D O I
10.1364/OL.539572
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 101-102 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
页码:305 / 308
页数:4
相关论文
共 24 条
  • [1] Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR
    Abadia, Nicolas
    Bello, Frank
    Zhong, Chuan
    Flanigan, Patrick
    McCloskey, David M.
    Wolf, Christopher
    Krichevsky, Alexander
    Wolf, Daniel
    Zong, Fenghua
    Samani, Alireza
    Plant, David V.
    Donegan, John F.
    [J]. OPTICS EXPRESS, 2018, 26 (02): : 1752 - 1765
  • [2] Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice
    Beardsley, R. P.
    Akimov, A. V.
    Henini, M.
    Kent, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (08)
  • [3] STIMULATED PHONON EMISSION
    BRON, WE
    GRILL, W
    [J]. PHYSICAL REVIEW LETTERS, 1978, 40 (22) : 1459 - 1463
  • [4] Characterizing deformability and surface friction of cancer cells
    Byun, Sangwon
    Son, Sungmin
    Amodei, Dario
    Cermak, Nathan
    Shaw, Josephine
    Kang, Joon Ho
    Hecht, Vivian C.
    Winslow, Monte M.
    Jacks, Tyler
    Mallick, Parag
    Manalis, Scott R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (19) : 7580 - 7585
  • [5] Polariton-driven phonon laser
    Chafatinos, D. L.
    Kuznetsov, A. S.
    Anguiano, S.
    Bruchhausen, A. E.
    Reynoso, A. A.
    Biermann, K.
    Santos, P., V
    Fainstein, A.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Quantum acoustics with superconducting qubits
    Chu, Yiwen
    Kharel, Prashanta
    Renninger, William H.
    Burkhart, Luke D.
    Frunzio, Luigi
    Rakich, Peter T.
    Schoelkopf, Robert J.
    [J]. SCIENCE, 2017, 358 (6360) : 199 - 202
  • [7] Collective enhancements in many-emitter phonon lasing
    Droenner, Leon
    Naumann, Nicolas L.
    Kabuss, Julia
    Carmele, Alexander
    [J]. PHYSICAL REVIEW A, 2017, 96 (04)
  • [8] Optically Driven Quantum Dots as Source of Coherent Cavity Phonons: A Proposal for a Phonon Laser Scheme
    Kabuss, Julia
    Carmele, Alexander
    Brandes, Tobias
    Knorr, Andreas
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [9] Coherent phonon lasing in a thermal quantum nanomachine
    Karwat, P.
    Reiter, D. E.
    Kuhn, T.
    Hess, O.
    [J]. PHYSICAL REVIEW A, 2018, 98 (05)
  • [10] PHONON MASERS AND PHONON BOTTLENECK
    KITTEL, C
    [J]. PHYSICAL REVIEW LETTERS, 1961, 6 (09) : 449 - &