An Efficient Embedding Framework for Uncertain Attribute Graph

被引:0
|
作者
Jiang, Ting [1 ]
Yu, Ting [1 ]
Qiao, Xueting [1 ]
Zhang, Ji [2 ]
机构
[1] Zhejiang Lab, Hangzhou, Peoples R China
[2] Univ Southern Queensland, Toowoomba, Qld, Australia
基金
中国国家自然科学基金;
关键词
Uncertain graph; Gaussian embedding; encoder-decoder;
D O I
10.1007/978-3-031-39821-6_18
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Graph data with uncertain connections between entities is commonly represented using uncertain graphs. This paper tackles the challenge of graph embedding within such uncertain attribute graphs. Current graph embedding techniques are typically oriented towards deterministic graphs, or uncertain graphs that lack attribute data. Furthermore, the majority of studies on uncertain graph learning simply adapt conventional algorithms for deterministic graphs to handle uncertainty, leading to compromised computational efficiency. To address these issues, we introduce an optimized embedding framework UAGE for uncertain attribute graphs. In UAGE, nodes are represented within a Gaussian distribution space to learn node attributes. We also propose a Probability Similarity Value (PSV) to manage relationship uncertainty and ensure that nodes with higher-order similar structures are located more closely in the latent space. Real-world dataset experiments confirm that UAGE surpasses contemporary methods in performance for downstream tasks.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [41] A type-augmented knowledge graph embedding framework for knowledge graph completion
    Peng He
    Gang Zhou
    Yao Yao
    Zhe Wang
    Hao Yang
    Scientific Reports, 13 (1)
  • [42] A type-augmented knowledge graph embedding framework for knowledge graph completion
    He, Peng
    Zhou, Gang
    Yao, Yao
    Wang, Zhe
    Yang, Hao
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [43] Efficient Non-Sampling Knowledge Graph Embedding
    Li, Zelong
    Ji, Jianchao
    Fu, Zuohui
    Ge, Yingqiang
    Xu, Shuyuan
    Chen, Chong
    Zhang, Yongfeng
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1727 - 1736
  • [44] An efficient graph embedding clustering approach for heterogeneous network
    Sajjadi, Zahra Sadat
    Esmaeili, Mahdi
    Ghobaei-Arani, Mostafa
    Minaei-Bidgoli, Behrouz
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 19562 - 19591
  • [45] An Efficient Framework for Incremental Graph Computation
    Liu, Qiang
    Dong, XiaoShe
    Chen, Heng
    Zhu, Zheng Dong
    Wang, Yinfeng
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 1420 - 1426
  • [46] Efficient Relative Attribute Learning Using Graph Neural Networks
    Meng, Zihang
    Adluru, Nagesh
    Kim, Hyunwoo J.
    Fung, Glenn
    Singh, Vikas
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 575 - 590
  • [47] GEval: A Modular and Extensible Evaluation Framework for Graph Embedding Techniques
    Pellegrino, Maria Angela
    Altabba, Abdulrahman
    Garofalo, Martina
    Ristoski, Petar
    Cochez, Michael
    SEMANTIC WEB (ESWC 2020), 2020, 12123 : 565 - 582
  • [48] A Framework of Joint Graph Embedding and Sparse Regression for Dimensionality Reduction
    Shi, Xiaoshuang
    Guo, Zhenhua
    Lai, Zhihui
    Yang, Yujiu
    Bao, Zhifeng
    Zhang, David
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (04) : 1341 - 1355
  • [49] Sampled in Pairs and Driven by Text: A New Graph Embedding Framework
    Chen, Liheng
    Qu, Yanru
    Wang, Zhenghui
    Zhang, Weinan
    Chen, Ken
    Zhang, Shaodian
    Yu, Yong
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2644 - 2651
  • [50] A Fragmentation-Based Graph Embedding Framework for QM/ML
    Collins, Eric M.
    Raghavachari, Krishnan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (31): : 6872 - 6880