Thermal Area Law in Long-Range Interacting Systems

被引:0
作者
Kim, Donghoon [1 ]
Kuwahara, Tomotaka [1 ,2 ,3 ]
Saito, Keiji [4 ]
机构
[1] RIKEN Ctr Quantum Comp RQC, Analyt Quantum Complex RIKEN Hakubi Res Team, Wako, Saitama 3510198, Japan
[2] RIKEN Cluster Pioneering Res CPR, Wako, Saitama 3510198, Japan
[3] Japan Sci & Technol JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[4] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
关键词
PHASE-TRANSITION; KMS STATES; QUANTUM; ENTANGLEMENT; PROPAGATION; UNIQUENESS;
D O I
10.1103/PhysRevLett.134.020402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The area law of the bipartite information measure characterizes one of the most fundamental aspects of quantum many-body physics. In thermal equilibrium, the area law for the mutual information universally holds at arbitrary temperatures as long as the systems have short-range interactions. In systems with power- law decaying interactions, r (- alpha) (r: distance), conditions for the thermal area law are elusive. In this Letter, we aim to clarify the optimal condition alpha > alpha(c) such that the thermal area law universally holds. A standard approach to considering the conditions is to focus on the magnitude of the boundary interaction between two subsystems. However, we find here that the thermal area law is more robust than this conventional argument suggests. We show the optimal threshold for the thermal area law by alpha(c) = ( D + 1)/2 (D: the spatial dimension of the lattice), assuming a power-law decay of the clustering for the bipartite correlations. Remarkably, this condition encompasses even the thermodynamically unstable regimes alpha < D . We verify this condition numerically, finding that it is qualitatively accurate for both integrable and nonintegrable systems. Unconditional proof of the thermal area law is possible by developing the power-law clustering theorem for alpha > D above a threshold temperature. Furthermore, the numerical calculation for the logarithmic negativity shows that the same criterion alpha > ( D + 1)/2 applies to the thermal area law for quantum entanglement.
引用
收藏
页数:7
相关论文
共 72 条
  • [61] Energy current correlation in solvable long-range interacting systems
    Tamaki, Shuji
    Saito, Keiji
    [J]. PHYSICAL REVIEW E, 2020, 101 (04)
  • [62] Lieb-Robinson Light Cone for Power-Law Interactions
    Tran, Minh C.
    Guo, Andrew Y.
    Baldwin, Christopher L.
    Ehrenberg, Adam
    Gorshkov, Alexey, V
    Lucas, Andrew
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (16)
  • [63] Tran MC, 2021, PHYS REV X, V11, DOI [10.1103/PhysRevX.11.031016, 10.1103/physrevx.11.031016]
  • [64] Entanglement in quantum critical phenomena
    Vidal, G
    Latorre, JI
    Rico, E
    Kitaev, A
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (22) : 4 - 227902
  • [65] Kitaev Chains with Long-Range Pairing
    Vodola, Davide
    Lepori, Luca
    Ercolessi, Elisa
    Gorshkov, Alexey V.
    Pupillo, Guido
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [66] X-symbols for non-Abelian symmetries in tensor networks
    Weichselbaum, Andreas
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [67] Non-abelian symmetries in tensor networks: A quantum symmetry space approach
    Weichselbaum, Andreas
    [J]. ANNALS OF PHYSICS, 2012, 327 (12) : 2972 - 3047
  • [68] Area laws in quantum systems: Mutual information and correlations
    Wolf, Michael M.
    Verstraete, Frank
    Hastings, Matthew B.
    Cirac, J. Ignacio
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [69] Observation of dipolar spin-exchange interactions with lattice-confined polar molecules
    Yan, Bo
    Moses, Steven A.
    Gadway, Bryce
    Covey, Jacob P.
    Hazzard, Kaden R. A.
    Rey, Ana Maria
    Jin, Deborah S.
    Ye, Jun
    [J]. NATURE, 2013, 501 (7468) : 521 - +
  • [70] Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator
    Zhang, J.
    Pagano, G.
    Hess, P. W.
    Kyprianidis, A.
    Ecker, P. B.
    Kaplan, H.
    Gorshkov, A. V.
    Gong, Z. -X.
    Monroe, C.
    [J]. NATURE, 2017, 551 (7682) : 601 - +