Thermal Area Law in Long-Range Interacting Systems

被引:0
作者
Kim, Donghoon [1 ]
Kuwahara, Tomotaka [1 ,2 ,3 ]
Saito, Keiji [4 ]
机构
[1] RIKEN Ctr Quantum Comp RQC, Analyt Quantum Complex RIKEN Hakubi Res Team, Wako, Saitama 3510198, Japan
[2] RIKEN Cluster Pioneering Res CPR, Wako, Saitama 3510198, Japan
[3] Japan Sci & Technol JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[4] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
关键词
PHASE-TRANSITION; KMS STATES; QUANTUM; ENTANGLEMENT; PROPAGATION; UNIQUENESS;
D O I
10.1103/PhysRevLett.134.020402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The area law of the bipartite information measure characterizes one of the most fundamental aspects of quantum many-body physics. In thermal equilibrium, the area law for the mutual information universally holds at arbitrary temperatures as long as the systems have short-range interactions. In systems with power- law decaying interactions, r (- alpha) (r: distance), conditions for the thermal area law are elusive. In this Letter, we aim to clarify the optimal condition alpha > alpha(c) such that the thermal area law universally holds. A standard approach to considering the conditions is to focus on the magnitude of the boundary interaction between two subsystems. However, we find here that the thermal area law is more robust than this conventional argument suggests. We show the optimal threshold for the thermal area law by alpha(c) = ( D + 1)/2 (D: the spatial dimension of the lattice), assuming a power-law decay of the clustering for the bipartite correlations. Remarkably, this condition encompasses even the thermodynamically unstable regimes alpha < D . We verify this condition numerically, finding that it is qualitatively accurate for both integrable and nonintegrable systems. Unconditional proof of the thermal area law is possible by developing the power-law clustering theorem for alpha > D above a threshold temperature. Furthermore, the numerical calculation for the logarithmic negativity shows that the same criterion alpha > ( D + 1)/2 applies to the thermal area law for quantum entanglement.
引用
收藏
页数:7
相关论文
共 72 条
  • [31] Quasiparticle engineering and entanglement propagation in a quantum many-body system
    Jurcevic, P.
    Lanyon, B. P.
    Hauke, P.
    Hempel, C.
    Zoller, P.
    Blatt, R.
    Roos, C. F.
    [J]. NATURE, 2014, 511 (7508) : 202 - +
  • [32] Quantum Gibbs Samplers: The Commuting Case
    Kastoryano, Michael J.
    Brando, Fernando G. S. L.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (03) : 915 - 957
  • [33] Kimura Y, 2024, Arxiv, DOI arXiv:2403.11431
  • [34] UNIQUENESS OF KMS STATES OF ONE-DIMENSIONAL QUANTUM LATTICE SYSTEMS
    KISHIMOTO, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) : 167 - 170
  • [35] Topological entanglement entropy
    Kitaev, A
    Preskill, J
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [36] Locality of Temperature
    Kliesch, M.
    Gogolin, C.
    Kastoryano, M. J.
    Riera, A.
    Eisert, J.
    [J]. PHYSICAL REVIEW X, 2014, 4 (03):
  • [37] Entanglement Entropy for the Long-Range Ising Chain in a Transverse Field
    Koffel, Thomas
    Lewenstein, M.
    Tagliacozzo, Luca
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [38] PHASE-TRANSITIONS IN LONG-RANGE FERROMAGNETIC CHAINS
    KOSTERLITZ, JM
    [J]. PHYSICAL REVIEW LETTERS, 1976, 37 (23) : 1577 - 1580
  • [39] Quantum Time Crystals from Hamiltonians with Long-Range Interactions
    Kozin, Valerii K.
    Kyriienko, Oleksandr
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (21)
  • [40] Exponential Clustering of Bipartite Quantum Entanglement at Arbitrary Temperatures
    Kuwahara, Tomotaka
    Saito, Keiji
    [J]. PHYSICAL REVIEW X, 2022, 12 (02)