Feature Selection and Machine Learning Approaches for Detecting Sarcopenia Through Predictive Modeling

被引:3
作者
Tukhtaev, Akhrorbek [1 ]
Turimov, Dilmurod [1 ]
Kim, Jiyoun [2 ]
Kim, Wooseong [1 ]
机构
[1] Gachon Univ, Dept Comp Engn, Seongnam 13120, South Korea
[2] Gachon Univ, Dept Exercise Rehabil & Welf, Incheon 21936, South Korea
基金
新加坡国家研究基金会;
关键词
sarcopenia; machine learning; feature selection; LIME; CatBoost; random forest; support vector machine; XGBoost; SMOTE-Tomek; PHYSICAL-ACTIVITY;
D O I
10.3390/math13010098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sarcopenia is an age-associated condition characterized by a muscle mass and function decline. This condition poses significant health risks for the elderly. This study developed a machine-learning model to predict sarcopenia using data from 664 participants. Key features were identified using the Local Interpretable Model-Agnostic Explanations (LIME) method. This enhanced model interpretability. Additionally, the CatBoost algorithm was used for training, and SMOTE-Tomek addressed dataset imbalance. Notably, the reduced-feature model outperformed the full-feature model, achieving an accuracy of 0.89 and an AUC of 0.94. The results highlight the importance of feature selection for improving model efficiency and interpretability in clinical applications. This approach provides valuable insights into the early identification and management of sarcopenia, contributing to better patient outcomes.
引用
收藏
页数:26
相关论文
共 55 条
[1]  
Abdullahi DS, 2023, UMYU Scientifica, V2, P88, DOI [10.56919/usci.2123.011, DOI 10.56919/USCI.2123.011]
[2]   Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men [J].
Aggio, Daniel A. ;
Sartini, Claudio ;
Papacosta, Olia ;
Lennon, Lucy T. ;
Ash, Sarah ;
Whincup, Peter H. ;
Wannamethee, S. Goya ;
Jefferis, Barbara J. .
PREVENTIVE MEDICINE, 2016, 91 :264-272
[3]  
Ahmed Z., 2024, SN Comput. Sci, V5, P865, DOI [10.1007/s42979-024-03227-z, DOI 10.1007/S42979-024-03227-Z]
[4]   Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance [J].
Ahsan, Md Manjurul ;
Mahmud, M. A. Parvez ;
Saha, Pritom Kumar ;
Gupta, Kishor Datta ;
Siddique, Zahed .
TECHNOLOGIES, 2021, 9 (03)
[5]   Mathematical Modeling and Analysis of Credit Scoring Using the LIME Explainer: A Comprehensive Approach [J].
Aljadani, Abdussalam ;
Alharthi, Bshair ;
Farsi, Mohammed A. ;
Balaha, Hossam Magdy ;
Badawy, Mahmoud ;
Elhosseini, Mostafa A. .
MATHEMATICS, 2023, 11 (19)
[6]   Specific-Input LIME Explanations for Tabular Data Based on Deep Learning Models [J].
An, Junkang ;
Zhang, Yiwan ;
Joe, Inwhee .
APPLIED SCIENCES-BASEL, 2023, 13 (15)
[7]   Bias on Demand: A Modelling Framework That Generates Synthetic Data With Bias [J].
Baumann, Joachim ;
Castelnovo, Alessandro ;
Crupi, Riccardo ;
Inverardi, Nicole ;
Regoli, Daniele .
PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, 2023, :1002-1013
[8]   CatBoost model and artificial intelligence techniques for corporate failure prediction [J].
Ben Jabeur, Sami ;
Gharib, Cheima ;
Mefteh-Wali, Salma ;
Ben Arfi, Wissal .
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2021, 166
[9]   Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines [J].
Bilski, Jan ;
Pierzchalski, Piotr ;
Szczepanik, Marian ;
Bonior, Joanna ;
Zoladz, Jerzy A. .
CELLS, 2022, 11 (01)
[10]   Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment [J].
Blanc-Durand, P. ;
Schiratti, J. -B. ;
Schutte, K. ;
Jehanno, P. ;
Herent, P. ;
Pigneur, F. ;
Lucidarme, O. ;
Benaceur, Y. ;
Sadate, A. ;
Luciani, A. ;
Ernsti, O. ;
Rouchaud, A. ;
Creze, M. ;
Dallongeville, A. ;
Banaste, N. ;
Cadi, M. ;
Bousaid, I. ;
Lassau, N. ;
Jegou, S. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (12) :789-794