Multiscale Confinement-Modulated Cellulosic Dielectric Materials for Energy Harvesting and Self-Powered Devices

被引:1
|
作者
Huang, Huancheng [1 ]
Nong, Xinyue [1 ]
Zhang, Pinle [1 ]
Xu, Yanhao [1 ]
Chen, Junyu [1 ]
Yu, Fanchao [1 ]
Zhang, Cheng [2 ]
Xiao, Xiang [3 ]
Wang, Shuangfei [1 ]
Nie, Shuangxi [1 ]
Liu, Xinliang [1 ]
机构
[1] Guangxi Univ, Sch Light Ind & Food Engn, Guangxi Key Lab Clean Pulp & Papermaking & Pollut, Nanning 530004, Peoples R China
[2] Xianhe Co Ltd, Quzhou 324000, Peoples R China
[3] CSG EHV Power Transmiss Co, Elect Power Res Inst, Guangzhou 5140000, Peoples R China
基金
中国国家自然科学基金;
关键词
cellulose dielectric; confinement-modulated; energy harvesting; multiscale; self-powered sensing; TRIBOELECTRIC NANOGENERATOR; NANOCELLULOSE FILMS; BREAKDOWN STRENGTH; BARIUM-TITANATE; ELECTRIC-FIELD; PAPER; CONSTANT; TRANSPARENT; NANOCRYSTALS; POLYMER;
D O I
10.1002/adfm.202417509
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid rise of triboelectric nanogenerators, an innovative technology for low-frequency energy harvesting and self-powered sensing, has increased the interest in high-performance triboelectric materials. Enhancing the surface charge density via dielectric modulation is essential for high-performance triboelectric nanogenerators. As the most abundant biopolymer on earth, cellulose has remarkable properties such as excellent mechanical strength, thermal stability, and tunable surface chemistry, indicating its significant application potential in the design and fabrication of triboelectric nanogenerators. Owing to its unique multiscale structure and excellent processability, cellulose holds substantial promise for dielectric modulation. This review aims to provide comprehensive insights into the rational design and tailored preparation of cellulosic materials with optimal dielectric constants. First, the multiscale structure and exceptional advantages of cellulosic materials are interpreted. A comprehensive investigation into multiscale confinement-modulated cellulosic dielectric materials encompassing cellulosic molecules, dipoles, and fibers along with their dipoles is undertaken and the significance of interfacial polarization is explored. Furthermore, the emerging applications of cellulosic materials with superior dielectric properties in triboelectric nanogenerators, including energy harvesting, self-powered sensing, and self-powered medical and smart monitoring systems, are described. Finally, the challenges and future opportunities for cellulosic dielectric modulation are summarized.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Self-powered skin electronics for energy harvesting and healthcare monitoring
    Wu, M.
    Yao, K.
    Li, D.
    Huang, X.
    Liu, Y.
    Wang, L.
    Song, E.
    Yu, J.
    Yu, X.
    MATERIALS TODAY ENERGY, 2021, 21
  • [32] Ferroelectric Nanomaterials for Energy Harvesting and Self-Powered Sensing Applications
    Yu, Xiang
    Ji, Yun
    Zhang, Kewei
    Shen, Xinyi
    Zhang, Shijian
    Xu, Mofei
    Le, Xiaoyun
    ADVANCED SENSOR RESEARCH, 2024, 3 (12):
  • [33] Self-powered energy-harvesting magnetic field sensor
    Hu, Lizhi
    Wu, Hanzhou
    Zhang, Qianshi
    You, Haoran
    Jiao, Jie
    Luo, Haosu
    Wang, Yaojin
    Gao, Anran
    Duan, Chungang
    APPLIED PHYSICS LETTERS, 2022, 120 (04)
  • [34] A Novel Self-Powered Hybrid Rectifier for Piezoelectric Energy Harvesting
    Li, Xuewei
    Jiang, Hong
    Li, Bo
    Deng, Lixin
    Fan, Jiaming
    INTEGRATED FERROELECTRICS, 2024, 240 (01) : 121 - 139
  • [35] A novel energy harvesting actuator for self-powered environmental sensors
    Curry, Joshua
    Harris, Nick
    White, Neil
    2021 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2021), 2021,
  • [36] Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor
    Ng, TH
    Liao, WH
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (10) : 785 - 797
  • [37] Multifunctional Textile for Energy Harvesting and Self-Powered Sensing Applications
    Jao, Y. -T.
    Chang, T. -W.
    Lin, Z. -H.
    SOLID-STATE ELECTRONICS AND PHOTONICS IN BIOLOGY AND MEDICINE 4, 2017, 77 (07): : 47 - 50
  • [38] An Improved Self-Powered Switching Interface for Piezoelectric Energy Harvesting
    Liang, Junrui
    Liao, Wei-Hsin
    ICIA: 2009 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-3, 2009, : 924 - 929
  • [39] Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing
    Wang, Yitong
    Li, Zihua
    Fu, Hong
    Xu, Bingang
    NANO ENERGY, 2023, 115
  • [40] Self-powered smart blade: Helicopter blade energy harvesting
    Bryant, Matthew
    Fang, Austin
    Garcia, Ephrahim
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2010, PTS 1 AND 2, 2010, 7643