On ρ-semipermutable subgroups of finite groups

被引:0
作者
Huang, Yuxi [1 ]
Xu, Yong [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
rho-semipermutable; p-nilpotency; p-length; finite group; SYLOW P-SUBGROUPS; MINIMAL SUBGROUPS; QUASINORMALITY;
D O I
10.1142/S0219498826500799
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and H a subgroup of G. We say that H is rho-semipermutable in G if H permutes with all Sylow subgroups G(p) of G such that (|H|,p) = 1 and p ||H-G|. This paper aims to study the structure of finite groups G in the context of the assumption that all maximal subgroups of a Sylow p-subgroup of G are rho-semipermutable and some new results are obtained.
引用
收藏
页数:9
相关论文
共 50 条
[31]   On S-Semipermutable Subgroups and Soluble PST-Groups [J].
Hijazi, R. A. ;
Fakieh, W. M. ;
Ballester-Bolinches, A. ;
Beidleman, J. C. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
[32]   On c-Embedded Subgroups of Finite Groups [J].
Kaspczyk, Julian .
ADVANCES IN GROUP THEORY AND APPLICATIONS, 2023, 17 :9-18
[33]   ON τ-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS [J].
Li, Changwen ;
Zhang, Xuemei ;
Yi, Xiaolan .
MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) :997-1008
[34]   -permutable subgroups of finite groups [J].
Heliel, A. A. ;
Ballester-Bolinches, A. ;
Esteban-Romero, R. ;
Almestady, M. O. .
MONATSHEFTE FUR MATHEMATIK, 2016, 179 (04) :523-534
[35]   The Maximal Subgroups of Sylow Subgroups and the Structure of Finite Groups [J].
Li, Changwen ;
Zhang, Xuemei ;
Huang, Jianhong .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (01) :113-124
[36]   Finite Groups with -Supplemented Minimal Subgroups [J].
Li, Baojun .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) :2060-2070
[37]   Finite Groups with H-Subgroups [J].
Shen, Zhencai ;
Du, Ni .
ALGEBRA COLLOQUIUM, 2013, 20 (03) :421-426
[38]   On S*-embedded subgroups of finite groups [J].
Li, Changwen .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) :1585-1594
[39]   Finite groups with H-subgroups or strongly closed subgroups [J].
Shen, Zhencai ;
Li, Shirong .
JOURNAL OF GROUP THEORY, 2012, 15 (01) :85-100
[40]   S-semiembedded subgroups of finite groups [J].
Mao, Yuemei ;
Mahboob, Abid ;
Guo, Wenbin .
FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (06) :1401-1413