AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion

被引:1
|
作者
Jiang, Yitong [1 ,2 ]
Zhang, Zhaoyang [1 ]
Xu, Tianfan [1 ]
Gu, Jinwei [1 ]
机构
[1] Chinese Univ Hong Kong, Sha Tin, Hong Kong, Peoples R China
[2] Shanghai AI Lab, Shanghai, Peoples R China
来源
关键词
D O I
10.1007/978-3-031-73661-2_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present AutoDIR, an innovative all-in-one image restoration system incorporating latent diffusion. AutoDIR excels in its ability to automatically identify and restore images suffering from a range of unknown degradations. AutoDIR offers intuitive open-vocabulary image editing, empowering users to customize and enhance images according to their preferences. AutoDIR consists of two key stages: a Blind Image Quality Assessment (BIQA) stage based on a semantic-agnostic vision-language model which automatically detects unknown image degradations for input images, an All-in-One Image Restoration (AIR) stage utilizes structural-corrected latent diffusion which handles multiple types of image degradations. Extensive experimental evaluation demonstrates that AutoDIR outperforms state-of-the-art approaches for a wider range of image restoration tasks. The design of AutoDIR also enables flexible user control (via text prompt) and generalization to new tasks as a foundation model of image restoration. Project is available at: https://jiangyitong.github.io/AutoDIR_webpage/.
引用
收藏
页码:340 / 359
页数:20
相关论文
共 50 条
  • [21] All-in-one Multi-degradation Image Restoration Network via Hierarchical Degradation Representation
    Zhang, Cheng
    Zhu, Yu
    Yan, Qingsen
    Sun, Jinqiu
    Zhang, Yanning
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2285 - 2293
  • [22] TDM: Temporally-Consistent Diffusion Model for All-in-One Real-World Video Restoration
    Li, Yizhou
    Liu, Zihua
    Monno, Yusuke
    Okutomi, Masatoshi
    MULTIMEDIA MODELING, MMM 2025, PT IV, 2025, 15523 : 155 - 169
  • [23] MCCGAN: An All-In-One Image Restoration Under Adverse Conditions Using Multidomain Contextual Conditional Gan
    Siddiqua, Maria
    Akhter, Naeem
    Zameer, Aneela
    Khurshid, Javaid
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2025, 25 (02)
  • [24] RDM-IR: Task-adaptive deep unfolding network for All-In-One image restoration
    Cheng, Yuanshuo
    Shao, Mingwen
    Wan, Yecong
    Wang, Chao
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [25] All-in-One Image Dehazing Based on Attention Mechanism
    Dai, Qingyue
    Cui, Tong
    Zhang, Meng
    Zhao, Xinyi
    Hou, Binbin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14268 LNAI : 52 - 63
  • [26] All-in-one assessment of grassland health, degradation, and restoration: The concepts and methods
    Huang, Lin
    Fan, Jiangwen
    Yang, Zhi
    Wang, Guancong
    Li, Yuzhe
    Zhang, Haiyan
    Zhang, Yaxian
    Shi, Junhua
    Wang, Suizi
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (15): : 2015 - 2024
  • [27] Apple all-in-one is one for almost all
    不详
    FORTUNE, 2004, 150 (08) : 72 - +
  • [28] All-in-one optogenetics
    Erika Pastrana
    Nature Methods, 2013, 10 : 16 - 16
  • [29] ALL-IN-ONE COMPUTERS
    STERN, M
    RADIO-ELECTRONICS, 1983, 54 (04): : 67 - &
  • [30] All-in-one system
    Anon
    Papier und Folien - Druck Veredelung Verarbeitung, 2001, 36 (06):