Vortex lines in ultralight bosonic dark matter around rotating supermassive black holes

被引:1
作者
Korshynska, K. [1 ,2 ,3 ]
Prykhodko, O. O. [1 ]
V. Gorbar, E. [1 ,4 ]
Jia, Junji [5 ]
Yakimenko, A. I. [1 ,6 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Phys, 64-13 Volodymyrska St, UA-01601 Kyiv, Ukraine
[2] Phys Tech Bundesanstalt PTB, Bundesallee 100, D-38116 Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany
[4] Bogolyubov Inst Theoret Phys, 14-B Metrolohichna St, UA-03143 Kyiv, Ukraine
[5] Wuhan Univ, Sch Phys & Technol, 299 Bayi Rd, Wuhan 430072, Hubei, Peoples R China
[6] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
基金
新加坡国家研究基金会;
关键词
BOSE-EINSTEIN CONDENSATE; VORTICES; GALAXY; SCALE; MASS;
D O I
10.1103/PhysRevD.111.023006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Theoretical analysis of the interaction between superfluid dark matter and rotating supermassive black holes offers a promising framework for probing quantum effects in ultralight dark matter and its role in galactic structure. We study how black hole rotation influences the state of ultralight bosonic dark matter, focusing on the stability and dynamics of vortex lines. The gravitational effects of both dark matter and the black hole on the physical properties of these vortex lines, including their precession around the black hole, are analyzed.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Polarimetry and astrometry of NIR flares as event horizon scale, dynamical probes for the mass of Sgr A [J].
Abuter, R. ;
Aimar, N. ;
Amaro Seoane, P. ;
Amorim, A. ;
Baubock, M. ;
Berger, J. P. ;
Bonnet, H. ;
Bourdarot, G. ;
Brandner, W. ;
Cardoso, V. ;
Clenet, Y. ;
Davies, R. ;
de Zeeuw, P. T. ;
Dexter, J. ;
Drescher, A. ;
Eckart, A. ;
Eisenhauer, F. ;
Feuchtgruber, H. ;
Finger, G. ;
Foerster Schreiber, N. M. ;
Foschi, A. ;
Garcia, P. ;
Gao, F. ;
Gelles, Z. ;
Gendron, E. ;
Genzel, R. ;
Gillessen, S. ;
Hartl, M. ;
Haubois, X. ;
Haussmann, F. ;
Heissel, G. ;
Henning, T. ;
Hippler, S. ;
Horrobin, M. ;
Jochum, L. ;
Jocou, L. ;
Kaufer, A. ;
Kervella, P. ;
Lacour, S. ;
Lapeyrere, V. ;
Le Bouquin, J. -B. ;
Lena, P. ;
Lutz, D. ;
Mang, F. ;
More, N. ;
Ott, T. ;
Paumard, T. ;
Perraut, K. ;
Perrin, G. ;
Pfuhl, O. .
ASTRONOMY & ASTROPHYSICS, 2023, 677
[2]  
孙秀芹, 2019, [中国预防医学杂志, China Preventive Medicine], V20, P78
[3]   Corotation of two quantized vortices coupled with collective modes in self-gravitating Bose-Einstein condensates [J].
Asakawa, Kenta ;
Tsubota, Makoto .
PHYSICAL REVIEW A, 2024, 110 (05)
[4]   Mass and angular momentum of Sgr A [J].
Aschenbach, B .
Growing Black Holes: Accretion in a Cosmological Context, 2005, :302-303
[5]   Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation [J].
Bar, Nitsan ;
Blas, Diego ;
Blum, Kfir ;
Sibiryakov, Sergey .
PHYSICAL REVIEW D, 2018, 98 (08)
[6]   Black hole superradiance of self-interacting scalar fields [J].
Baryakhtar, Masha ;
Galanis, Marios ;
Lasenby, Robert ;
Simon, Olivier .
PHYSICAL REVIEW D, 2021, 103 (09)
[7]   Can dark matter be a Bose-Einstein condensate? [J].
Bohmer, C. G. ;
Harko, T. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (06)
[8]   Parasitic black holes: The swallowing of a fuzzy dark matter soliton [J].
Cardoso, Vitor ;
Ikeda, Taishi ;
Vicente, Rodrigo ;
Zilhao, Miguel .
PHYSICAL REVIEW D, 2022, 106 (12)
[9]  
Chavanis H., 2015, Quantum Aspects of Black Holes, Fundamental Theories of Physics, V178