A simple Minkowskian time-travel spacetime

被引:0
|
作者
Norton, John D. [1 ]
机构
[1] Univ Pittsburgh, Dept Hist & Philosophy Sci, Pittsburgh, PA 15260 USA
关键词
D O I
10.1119/5.0224022
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This relativistic, time-travel spacetime is everywhere metrically flat, excepting a conical singularity. Observers following timelike geodesics can eventually encounter their past selves, aging in the opposite time sense. The spacetime is not time orientable.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [1] SPACETIME GEOMETRIES, TIME-TRAVEL AND THE MODERN GEOMETRICAL NARRATIVE
    SLUSSER, G
    CHATELAIN, D
    SCIENCE-FICTION STUDIES, 1995, 22 : 161 - 186
  • [2] Time-Travel Gamification: Spacetime Looping to Emergent Experience
    Crockett, Larry
    PROCEEDINGS OF THE 11TH EUROPEAN CONFERENCE ON GAMES BASED LEARNING (ECGBL 2017), 2017, : 122 - 129
  • [3] TIME-TRAVEL
    ENGELMAN, LJ
    INTERNET WORLD, 1995, 6 (09): : 106 - &
  • [4] TIME-TRAVEL
    JACKIW, R
    UKRAINSKII FIZICHESKII ZHURNAL, 1994, 39 (01): : 6 - 14
  • [5] TIME-TRAVEL
    LAWREN, B
    OMNI, 1987, 10 (02) : 20 - &
  • [6] TROUBLE WITH TIME-TRAVEL
    DAVIES, P
    NATURE, 1979, 277 (5698) : 602 - 602
  • [7] THE LAWS OF TIME-TRAVEL
    JAKIEL, SJ
    LEVINTHAL, RE
    EXTRAPOLATION, 1980, 21 (02) : 130 - 138
  • [8] Fundamentality and Time-Travel
    Kleinschmidt, Shieva
    THOUGHT-A JOURNAL OF PHILOSOPHY, 2015, 4 (01): : 46 - 51
  • [9] IS TIME-TRAVEL POSSIBLE
    SMART, JJC
    JOURNAL OF PHILOSOPHY, 1963, 60 (09) : 237 - 241
  • [10] Time-Travel Rephotography
    Xuan Luo
    Zhang, Xuaner
    Yoo, Paul
    Martin-Brualla, Ricardo
    Lawrence, Jason
    Seitz, Steven M.
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06):