Pathologically validated deep learning model for laryngeal and hypopharyngeal GTV delineation on MRI

被引:0
|
作者
Kuijer, Koen M. [1 ,2 ]
Smits, Hilde J. G. [1 ]
Doornaert, Patricia A. H. [1 ]
Niu, Kenan [3 ]
Smid, Ernst J. [1 ]
Terhaard, Chris H. J. [1 ]
de Ridder, Mischa [1 ]
Philippens, Marielle E. P. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, Utrecht, Netherlands
[2] Univ Twente, Tech Med, Enschede, Netherlands
[3] Univ Twente, Robot & Mechatron Grp, Fac Elect Engn Math & Comp Sci, Enschede, Netherlands
关键词
Laryngeal and hypopharyngeal GTV; MRI; pathology;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2411
引用
收藏
页码:S3102 / S3104
页数:3
相关论文
共 33 条
  • [21] Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE
    Hashemzehi, Raheleh
    Mahdavi, Seyyed Javad Seyyed
    Kheirabadi, Maryam
    Kamel, Seyed Reza
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1225 - 1232
  • [22] Explanation-Driven Deep Learning Model for Prediction of Brain Tumour Status Using MRI Image Data
    Gaur, Loveleen
    Bhandari, Mohan
    Razdan, Tanvi
    Mallik, Saurav
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2022, 13
  • [23] MSFF: An automated multi-scale feature fusion deep learning model for spine fracture segmentation using MRI
    Saeed, Muhammad Usman
    Bin, Wang
    Sheng, Jinfang
    Albarakati, Hussain Mobarak
    Dastgir, Aqsa
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [24] MRI-based automated diagnosis of Alzheimer's disease using Alzh-Net deep learning model
    Venkat, Shashank
    Ghodeswar, Tanmay
    Chavan, Parth
    Narayanasamy, Senthil Kumar
    Srinivasan, Kathiravan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [25] MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model
    Chun, Jaehee
    Zhang, Hao
    Gach, H. Michael
    Olberg, Sven
    Mazur, Thomas
    Green, Olga
    Kim, Taeho
    Kim, Hyun
    Kim, Jin Sung
    Mutic, Sasa
    Park, Justin C.
    MEDICAL PHYSICS, 2019, 46 (09) : 4148 - 4164
  • [26] A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans
    Sharma S.
    Guleria K.
    Tiwari S.
    Kumar S.
    Measurement: Sensors, 2022, 24
  • [27] A semi-automatic deep learning model based on biparametric MRI scanning strategy to predict bone metastases in newly diagnosed prostate cancer patients
    Song, Xinyang
    Shen, Tianci
    Hu, Xiangyu
    Zhang, Shuang
    Wang, Yangyang
    Du, Mengying
    Xu, Tonghui
    Zhou, Jingran
    Yang, Feng
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [28] Automatic Ventriculomegaly Detection in Fetal Brain MRI: A Step-by-Step Deep Learning Model for Novel 2D-3D Linear Measurements
    Vahedifard, Farzan
    Ai, H. Asher
    Supanich, Mark P.
    Marathu, Kranthi K.
    Liu, Xuchu
    Kocak, Mehmet
    Ansari, Shehbaz M.
    Akyuz, Melih
    Adepoju, Jubril O.
    Adler, Seth
    Byrd, Sharon
    DIAGNOSTICS, 2023, 13 (14)
  • [29] Brain tumor classification from MRI scans: a framework of hybrid deep learning model with Bayesian optimization and quantum theory-based marine predator algorithm
    Ullah, Muhammad Sami
    Khan, Muhammad Attique
    Masood, Anum
    Mzoughi, Olfa
    Saidani, Oumaima
    Alturki, Nazik
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [30] Automatized hepatic tumor volume analysis of neuroendocrine liver metastases by Gd-EOB MRI - A deep learning model to support multidisciplinary cancer conference decision making
    Fehrenbach, U.
    Xin, S.
    Hartenstein, A.
    Auer, T.
    Draeger, F.
    Froebse, K.
    Jann, H.
    Mogl, M.
    Amthauer, H.
    Denecke, T.
    Wiedenmann, B.
    Penzkofer, T.
    JOURNAL OF NEUROENDOCRINOLOGY, 2021, 33 : 121 - 121