Cardiac Arrhythmia Classification Using Convolutional Neural Network

被引:0
作者
Gamgami, Oumaima [1 ]
Korikache, Reda [1 ]
Chaieb, Amine [2 ]
机构
[1] Univ Mohamed I UMP, Fac Sci Oujda FSO, Lab Numer Anal & Optimizat LANO, Oujda, Morocco
[2] Univ Mohamed I UMP, Polydisciplinary Fac Nador FPN, Lab Mol Chem Mat & Environm LCM2E, Oujda, Morocco
来源
ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024 | 2024年 / 11卷
关键词
Electrocardiogram (ECG); Deep Learning; Convolutional Neural Network (CNN); MIT-BIH dataset; Classification;
D O I
10.1007/978-3-031-66850-0_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The heart, vital for sustaining life, relies on proper rhythm to function effectively. Arrhythmia, a condition disrupting this rhythm, is a significant medical concern. Using Electrocardiogram (ECG) data, medical professionals diagnose arrhythmias by analyzing the heart's electrical signals. ECGs are widely used in clinical practice to assess cardiac health. This study aims to utilize deep learning techniques specifically Convolutional Neural Network (CNN), on an ECG dataset categorized into multiple classes including Right Bundle Branch Block Beat, Ventricular Escape Beat, Supraventricular Premature Beat, Normal Beat, and others. Automated arrhythmia diagnosis has substantial implications in cardiology and emergency medicine, enabling swift identification by healthcare providers and potentially saving lives. The model trained, validated and tested using ECG signals from the MIT-BIH database. To assess model performance, the confusion matrix used to compute accuracy, precision, recall and F1-score. Experimental results demonstrate outstanding performance, with accuracies of 99.67% and 99.71% in the validation and test sets, respectively. This indicates the model's potential as automated tool for arrhythmia diagnosis.
引用
收藏
页码:297 / 308
页数:12
相关论文
共 31 条
[1]  
Abdullah TAA, 2020, INT J ADV COMPUT SC, V11, P215
[2]  
Abdullah TAA, 2019, INT J COMPUT SCI NET, V19, P139
[3]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[4]   Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model [J].
Ahmed, Adel A. A. ;
Ali, Waleed ;
Abdullah, Talal A. A. ;
Malebary, Sharaf J. J. .
MATHEMATICS, 2023, 11 (03)
[5]   Classification of BOLD FMRI Signals using Wavelet Transform and Transfer Learning for Detection of Autism Spectrum Disorder [J].
Al-Hiyali, Mohammed, I ;
Yahya, Norashikin ;
Faye, Ibrahima ;
Khan, Zia ;
Alsaih, Khaled .
2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, :94-98
[6]   Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network [J].
Al-Hiyali, Mohammed Isam ;
Yahya, Norashikin ;
Faye, Ibrahima ;
Hussein, Ahmed Faeq .
SENSORS, 2021, 21 (16)
[7]   A database for using machine learning and data mining techniques for coronary artery disease diagnosis [J].
Alizadehsani, R. ;
Roshanzamir, M. ;
Abdar, M. ;
Beykikhoshk, A. ;
Khosravi, A. ;
Panahiazar, M. ;
Koohestani, A. ;
Khozeimeh, F. ;
Nahavandi, S. ;
Sarrafzadegan, N. .
SCIENTIFIC DATA, 2019, 6 (1)
[8]   Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings [J].
Alkhodari, Mohanad ;
Fraiwan, Luay .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200
[9]   Classification of Electrocardiogram Signals Based on Hybrid Deep Learning Models [J].
Bhatia, Surbhi ;
Pandey, Saroj Kumar ;
Kumar, Ankit ;
Alshuhail, Asma .
SUSTAINABILITY, 2022, 14 (24)
[10]   Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning [J].
Butt, Fatima Sajid ;
La Blunda, Luigi ;
Wagner, Matthias F. ;
Schaefer, Joerg ;
Medina-Bulo, Inmaculada ;
Gomez-Ullate, David .
INFORMATION, 2021, 12 (02) :1-22