Tissue-specific chromatin accessibility and transcriptional regulation in maize cold stress response

被引:1
作者
Han, Jinlei [1 ]
Dai, Yan [1 ]
Zhou, Jialiang [1 ]
Tian, Jingjing [1 ]
Chen, Qi [1 ]
Kou, Xiaobing [1 ]
Raza, Ghulam [2 ]
Zhang, Baohong [3 ]
Wang, Kai [1 ]
机构
[1] Nantong Univ, Sch Life Sci, Nantong 226019, Peoples R China
[2] Natl Inst Biotechnol & Genet Engn NIBGE, Faisalabad 38000, Pakistan
[3] East Carolina Univ, Dept Biol, Greenville, NC 27858 USA
基金
中国国家自然科学基金;
关键词
Cold stress; Chromatin accessibility; Gene expression; Regulatory network; Maize; EXPRESSION ANALYSIS; ABIOTIC STRESS; ELEMENTS; IDENTIFICATION; MECHANISMS; BINDING; ACID;
D O I
10.1016/j.ygeno.2024.110981
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Maize, a vital crop globally, faces significant yield losses due to its sensitivity to cold stress, especially in temperate regions. Understanding the molecular mechanisms governing maize response to cold stress is crucial for developing strategies to enhance cold tolerance. However, the precise chromatin-level regulatory mechanisms involved remain largely unknown. In this study, we employed DNase-seq and RNA-seq techniques to investigate chromatin accessibility and gene expression changes in maize root, stem, and leaf tissues subjected to cold treatment. We discovered widespread changes in chromatin accessibility and gene expression across these tissues, with strong tissue specificity. Cold stress-induced DNase I hypersensitive sites (coiDHSs) were associated with differentially expressed genes, suggesting a direct link between chromatin accessibility and gene regulation under cold stress. Motif enrichment analysis identified ERF transcription factors (TFs) as central regulators conserved across tissues, with ERF5 emerging as pivotal in the cold response regulatory network. Additionally, TF co-localization analysis highlighted six TF pairs (ERF115-SHN3, ERF9-LEP, ERF7-SHN3, LEP-SHN3, LOBSHN3, and AS2-LOB) conserved across tissues but showing tissue-specific binding preferences. These findings indicate intricate regulatory networks in maize cold response. Overall, our study provides insights into the chromatin-level regulatory mechanisms underpinning maize adaptive response to cold stress, offering potential targets for enhancing cold tolerance in agricultural contexts.
引用
收藏
页数:11
相关论文
共 95 条
[31]   Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience [J].
Jahed, Khalil R. ;
Saini, Amolpreet Kaur ;
Sherif, Sherif M. .
FRONTIERS IN PLANT SCIENCE, 2023, 14
[32]   Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize [J].
Jiang, Haifang ;
Shi, Yiting ;
Liu, Jingyan ;
Li, Zhen ;
Fu, Diyi ;
Wu, Shifeng ;
Li, Minze ;
Yang, Zijia ;
Shi, Yunlu ;
Lai, Jinsheng ;
Yang, Xiaohong ;
Gong, Zhizhong ;
Hua, Jian ;
Yang, Shuhua .
NATURE PLANTS, 2022, 8 (10) :1176-+
[33]   Light Quality Modulates Plant Cold Response and Freezing Tolerance [J].
Kameniarova, Michaela ;
Cerny, Martin ;
Novak, Jan ;
Ondriskova, Vladena ;
Hruskova, Lenka ;
Berka, Miroslav ;
Vankova, Radomira ;
Brzobohaty, Bretislav .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[34]   Karrikin signalling: impacts on plant development and abiotic stress tolerance [J].
Kamran, Muhammad ;
Melville, Kim T. ;
Waters, Mark T. .
JOURNAL OF EXPERIMENTAL BOTANY, 2024, 75 (04) :1174-1186
[35]   Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops [J].
Khalid, Memoona ;
Rehman, Hafiz Mamoon ;
Ahmed, Nisar ;
Nawaz, Sehar ;
Saleem, Fozia ;
Ahmad, Shakeel ;
Uzair, Muhammad ;
Rana, Iqrar Ahmad ;
Atif, Rana Muhammad ;
Zaman, Qamar U. ;
Lam, Hon-Ming .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
[36]   Super-enhancer-associated transcription factors collaboratively regulate trophoblast-active gene expression programs in human trophoblast stem cells [J].
Kim, Mijeong ;
Adu-Gyamfi, Enoch Appiah ;
Kim, Jonghwan ;
Lee, Bum-Kyu .
NUCLEIC ACIDS RESEARCH, 2023, 51 (08) :3806-3819
[37]   DNA-guided transcription factor cooperativity shapes face and limb mesenchyme [J].
Kim, Seungsoo ;
Morgunova, Ekaterina ;
Naqvi, Sahin ;
Goovaerts, Seppe ;
Bader, Maram ;
Koska, Mervenaz ;
Popov, Alexander ;
Luong, Christy ;
Pogson, Angela ;
Swigut, Tomek ;
Claes, Peter ;
Taipale, Jussi ;
Wysocka, Joanna .
CELL, 2024, 187 (03) :692-711.e26
[38]   Chromatin accessibility and the regulatory epigenome [J].
Klemm, Sandy L. ;
Shipony, Zohar ;
Greenleaf, William J. .
NATURE REVIEWS GENETICS, 2019, 20 (04) :207-220
[39]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]
[40]   CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium [J].
Li, Chuanwei ;
Su, Jiangshuo ;
Zhao, Nan ;
Lou, La ;
Ou, Xiaoli ;
Yan, Yajun ;
Wang, Likai ;
Jiang, Jiafu ;
Chen, Sumei ;
Chen, Fadi .
PLANT BIOTECHNOLOGY JOURNAL, 2023, 21 (02) :270-282