Sparsified simultaneous confidence intervals for high-dimensional linear models

被引:0
|
作者
Zhu, Xiaorui [1 ]
Qin, Yichen [2 ]
Wang, Peng [2 ]
机构
[1] Towson Univ, Dept Business Analyt & Technol Management, Towson, MD 21252 USA
[2] Univ Cincinnati, Dept Operat Business Analyt & Informat Syst, Cincinnati, OH USA
关键词
High-dimensional inference; Model confidence bounds; Selection uncertainty; Simultaneous confidence intervals; POST-SELECTION INFERENCE; TRANSCRIPTION FACTORS; VARIABLE-SELECTION; CELL-CYCLE; LONGITUDINAL DATA; EXPRESSION; LASSO; IDENTIFICATION; GENES;
D O I
10.1007/s00184-024-00975-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference of the high-dimensional regression coefficients is challenging because the uncertainty introduced by the model selection procedure is hard to account for. Currently, the inference of the model and the inference of the coefficients are separately sought. A critical question remains unsettled; that is, is it possible to embed the inference of the model into the simultaneous inference of the coefficients? If so, then how to properly design a simultaneous inference tool with desired properties? To this end, we propose a notion of simultaneous confidence intervals called the sparsified simultaneous confidence intervals (SSCI). Our intervals are sparse in the sense that some of the intervals' upper and lower bounds are shrunken to zero (i.e., [0, 0]), indicating the unimportance of the corresponding covariates. These covariates should be excluded from the final model. The rest of the intervals, either containing zero (e.g., [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1,1]$$\end{document} or [0, 1]) or not containing zero (e.g., [2, 3]), indicate the plausible and significant covariates, respectively. The SSCI intuitively suggests a lower-bound model with significant covariates only and an upper-bound model with plausible and significant covariates. The proposed method can be coupled with various selection procedures, making it ideal for comparing their uncertainty. For the proposed method, we establish desirable asymptotic properties, develop intuitive graphical tools for visualization, and justify its superior performance through simulation and real data analysis.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] High-Dimensional Linear Models: A Random Matrix Perspective
    Namdari, Jamshid
    Paul, Debashis
    Wang, Lili
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2021, 83 (02): : 645 - 695
  • [42] Empirical process of residuals for high-dimensional linear models
    Mammen, E
    ANNALS OF STATISTICS, 1996, 24 (01): : 307 - 335
  • [43] Cluster feature selection in high-dimensional linear models
    Lin, Bingqing
    Pang, Zhen
    Wang, Qihua
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2018, 7 (01)
  • [44] High-dimensional linear models with many endogenous variables
    Belloni, Alexandre
    Hansen, Christian
    Newey, Whitney
    JOURNAL OF ECONOMETRICS, 2022, 228 (01) : 4 - 26
  • [45] Learning High-Dimensional Generalized Linear Autoregressive Models
    Hall, Eric C.
    Raskutti, Garvesh
    Willett, Rebecca M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2401 - 2422
  • [46] TESTING HIGH-DIMENSIONAL REGRESSION COEFFICIENTS IN LINEAR MODELS
    Zhao, Alex
    Li, Changcheng
    Li, Runze
    Zhang, Zhe
    ANNALS OF STATISTICS, 2024, 52 (05): : 2034 - 2058
  • [47] TESTABILITY OF HIGH-DIMENSIONAL LINEAR MODELS WITH NONSPARSE STRUCTURES
    Bradic, Jelena
    Fan, Jianqing
    Zhu, Yinchu
    ANNALS OF STATISTICS, 2022, 50 (02): : 615 - 639
  • [48] High-dimensional robust inference for censored linear models
    Huang, Jiayu
    Wu, Yuanshan
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 891 - 918
  • [49] Estimation in High-Dimensional Analysis and Multivariate Linear Models
    Kollo, Tonu
    Von Rosen, Tatjana
    Von Rosen, Dietrich
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (07) : 1241 - 1253
  • [50] Noise Level Estimation in High-Dimensional Linear Models
    Golubev, G. K.
    Krymova, E. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2018, 54 (04) : 351 - 371