Sparsified simultaneous confidence intervals for high-dimensional linear models

被引:0
|
作者
Zhu, Xiaorui [1 ]
Qin, Yichen [2 ]
Wang, Peng [2 ]
机构
[1] Towson Univ, Dept Business Analyt & Technol Management, Towson, MD 21252 USA
[2] Univ Cincinnati, Dept Operat Business Analyt & Informat Syst, Cincinnati, OH USA
关键词
High-dimensional inference; Model confidence bounds; Selection uncertainty; Simultaneous confidence intervals; POST-SELECTION INFERENCE; TRANSCRIPTION FACTORS; VARIABLE-SELECTION; CELL-CYCLE; LONGITUDINAL DATA; EXPRESSION; LASSO; IDENTIFICATION; GENES;
D O I
10.1007/s00184-024-00975-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference of the high-dimensional regression coefficients is challenging because the uncertainty introduced by the model selection procedure is hard to account for. Currently, the inference of the model and the inference of the coefficients are separately sought. A critical question remains unsettled; that is, is it possible to embed the inference of the model into the simultaneous inference of the coefficients? If so, then how to properly design a simultaneous inference tool with desired properties? To this end, we propose a notion of simultaneous confidence intervals called the sparsified simultaneous confidence intervals (SSCI). Our intervals are sparse in the sense that some of the intervals' upper and lower bounds are shrunken to zero (i.e., [0, 0]), indicating the unimportance of the corresponding covariates. These covariates should be excluded from the final model. The rest of the intervals, either containing zero (e.g., [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1,1]$$\end{document} or [0, 1]) or not containing zero (e.g., [2, 3]), indicate the plausible and significant covariates, respectively. The SSCI intuitively suggests a lower-bound model with significant covariates only and an upper-bound model with plausible and significant covariates. The proposed method can be coupled with various selection procedures, making it ideal for comparing their uncertainty. For the proposed method, we establish desirable asymptotic properties, develop intuitive graphical tools for visualization, and justify its superior performance through simulation and real data analysis.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] High-dimensional inference in misspecified linear models
    Buehlmann, Peter
    van de Geer, Sara
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1449 - 1473
  • [32] ON ASYMPTOTICALLY OPTIMAL CONFIDENCE REGIONS AND TESTS FOR HIGH-DIMENSIONAL MODELS
    Van de Geer, Sara
    Buehlmann, Peter
    Ritov, Ya'acov
    Dezeure, Ruben
    ANNALS OF STATISTICS, 2014, 42 (03): : 1166 - 1202
  • [33] Linear Hypothesis Testing in Dense High-Dimensional Linear Models
    Zhu, Yinchu
    Bradic, Jelena
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1583 - 1600
  • [34] Dimension reduction for simultaneous confidence intervals of linear contrasts
    Cheng, C
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 302 - 302
  • [35] Confidence Intervals and Hypothesis Testing for High-dimensional Quantile Regression: Convolution Smoothing and Debiasing
    Yan, Yibo
    Wang, Xiaozhou
    Zhang, Riquan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [36] High-dimensional robust inference for censored linear models
    Jiayu Huang
    Yuanshan Wu
    Science China Mathematics, 2024, 67 : 891 - 918
  • [37] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [38] Noise Level Estimation in High-Dimensional Linear Models
    G. K. Golubev
    E. A. Krymova
    Problems of Information Transmission, 2018, 54 : 351 - 371
  • [39] High-dimensional partially linear functional Cox models
    Chen, Xin
    Liu, Hua
    Men, Jiaqi
    You, Jinhong
    BIOMETRICS, 2025, 81 (01)
  • [40] Testing High-Dimensional Linear Asset Pricing Models
    Lan, Wei
    Feng, Long
    Luo, Ronghua
    JOURNAL OF FINANCIAL ECONOMETRICS, 2018, 16 (02) : 191 - 210