Sparsified simultaneous confidence intervals for high-dimensional linear models

被引:0
作者
Zhu, Xiaorui [1 ]
Qin, Yichen [2 ]
Wang, Peng [2 ]
机构
[1] Towson Univ, Dept Business Analyt & Technol Management, Towson, MD 21252 USA
[2] Univ Cincinnati, Dept Operat Business Analyt & Informat Syst, Cincinnati, OH USA
关键词
High-dimensional inference; Model confidence bounds; Selection uncertainty; Simultaneous confidence intervals; POST-SELECTION INFERENCE; TRANSCRIPTION FACTORS; VARIABLE-SELECTION; CELL-CYCLE; LONGITUDINAL DATA; EXPRESSION; LASSO; IDENTIFICATION; GENES;
D O I
10.1007/s00184-024-00975-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference of the high-dimensional regression coefficients is challenging because the uncertainty introduced by the model selection procedure is hard to account for. Currently, the inference of the model and the inference of the coefficients are separately sought. A critical question remains unsettled; that is, is it possible to embed the inference of the model into the simultaneous inference of the coefficients? If so, then how to properly design a simultaneous inference tool with desired properties? To this end, we propose a notion of simultaneous confidence intervals called the sparsified simultaneous confidence intervals (SSCI). Our intervals are sparse in the sense that some of the intervals' upper and lower bounds are shrunken to zero (i.e., [0, 0]), indicating the unimportance of the corresponding covariates. These covariates should be excluded from the final model. The rest of the intervals, either containing zero (e.g., [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1,1]$$\end{document} or [0, 1]) or not containing zero (e.g., [2, 3]), indicate the plausible and significant covariates, respectively. The SSCI intuitively suggests a lower-bound model with significant covariates only and an upper-bound model with plausible and significant covariates. The proposed method can be coupled with various selection procedures, making it ideal for comparing their uncertainty. For the proposed method, we establish desirable asymptotic properties, develop intuitive graphical tools for visualization, and justify its superior performance through simulation and real data analysis.
引用
收藏
页数:25
相关论文
共 50 条
  • [22] ESTIMATION IN HIGH-DIMENSIONAL LINEAR MODELS WITH DETERMINISTIC DESIGN MATRICES
    Shao, Jun
    Deng, Xinwei
    ANNALS OF STATISTICS, 2012, 40 (02) : 812 - 831
  • [23] Stable prediction in high-dimensional linear models
    Lin, Bingqing
    Wang, Qihua
    Zhang, Jun
    Pang, Zhen
    STATISTICS AND COMPUTING, 2017, 27 (05) : 1401 - 1412
  • [24] No penalty no tears: Least squares in high-dimensional linear models
    Wang, Xiangyu
    Dunson, David
    Leng, Chenlei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [25] Asymptotic properties of Lasso in high-dimensional partially linear models
    Ma Chi
    Huang Jian
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (04) : 769 - 788
  • [26] High-dimensional generalized linear models and the lasso
    van de Geer, Sara A.
    ANNALS OF STATISTICS, 2008, 36 (02) : 614 - 645
  • [27] Group selection in high-dimensional partially linear additive models
    Wei, Fengrong
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (03) : 219 - 243
  • [28] Stable prediction in high-dimensional linear models
    Bingqing Lin
    Qihua Wang
    Jun Zhang
    Zhen Pang
    Statistics and Computing, 2017, 27 : 1401 - 1412
  • [29] High-dimensional inference in misspecified linear models
    Buehlmann, Peter
    van de Geer, Sara
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1449 - 1473
  • [30] PROJECTION-BASED INFERENCE FOR HIGH-DIMENSIONAL LINEAR MODELS
    Yi, Sangyoon
    Zhang, Xianyang
    STATISTICA SINICA, 2022, 32 (02) : 915 - 937