Binocular speckle structured light disparity estimation based on spatial pyramid densely connected stereo matching network

被引:0
作者
Zhao, Yixin [1 ]
Zhu, Xinjun [1 ]
Lan, Tianyang [1 ]
Wang, Hongyi [1 ]
Song, Limei [2 ]
机构
[1] Tiangong Univ, Sch Artificial Intelligence, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Control Sci & Engn, Tianjin 300387, Peoples R China
来源
JOURNAL OF OPTICS-INDIA | 2025年
基金
中国国家自然科学基金;
关键词
Stereo matching; Structured light; Speckle; Disparity estimation; Edge;
D O I
10.1007/s12596-025-02577-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Stereo matching with speckle structured light is a crucial task in the field of optical 3D measurement and computer vision. Currently, stereo matching networks for structured light images still struggle with limited accuracy and lack of robustness particularly in term of details and edges. In order to improve the disparity estimation for speckle structured light images, in this paper we propose a spatial pyramid densely connected stereo matching network(DSSMNet). The proposed network incorporates a hybrid module that simultaneously performs spatial pyramid pooling and densely connected operations, and integrates the Convolutional Block Attention Module (CBAM) to enable multi-scale feature extraction. In addition, a new loss function is designed to optimize the edge information in network training. The results from simulated and real datasets demonstrate that, the network proposed in this paper can predict disparity results with more refined and intricate details and edges, and outperforms the state-of-the-art networks such as PSMNet, GWCNet, ACVNet and Lac-GwcNet in visual quality and in quantitative metrics.
引用
收藏
页数:14
相关论文
共 22 条
[1]   Pyramid Stereo Matching Network [J].
Chang, Jia-Ren ;
Chen, Yong-Sheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5410-5418
[2]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[3]   Group-wise Correlation Stereo Network [J].
Guo, Xiaoyang ;
Yang, Kai ;
Yang, Wukui ;
Wang, Xiaogang ;
Li, Hongsheng .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3268-3277
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916
[6]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[7]   End-to-End Learning of Geometry and Context for Deep Stereo Regression [J].
Kendall, Alex ;
Martirosyan, Hayk ;
Dasgupta, Saumitro ;
Henry, Peter ;
Kennedy, Ryan ;
Bachrach, Abraham ;
Bry, Adam .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :66-75
[8]   NMSCANet: stereo matching network for speckle variations in single-shot speckle projection profilometry [J].
Li, Genshen ;
Zhou, Pei ;
Du, Junlin ;
Zhang, Jianwei ;
Zhu, Jiangping .
OPTICS EXPRESS, 2024, 32 (04) :4778-4798
[9]   DSCNet: lightweight and efficient self-supervised network via depthwise separable cross convolution blocks for speckle image matching [J].
Li, Lin ;
Wang, Peng ;
Wang, Lingrui ;
Sun, Changku ;
Fu, Luhua .
OPTICS EXPRESS, 2024, 32 (06) :10715-10731
[10]   Stereo Vision-Based Semantic 3D Object and Ego-Motion Tracking for Autonomous Driving [J].
Li, Peiliang ;
Qin, Tong ;
Shen, Shaojie .
COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 :664-679