Multi-Agent Reinforcement Learning Based Resource Allocation for Efficient Message Dissemination in C-V2X Networks

被引:0
|
作者
Liu, Bingyi [1 ,2 ]
Hao, Jingxiang [1 ]
Wang, Enshu [3 ]
Jia, Dongyao [4 ]
Han, Weizhen [1 ]
Wu, Libing [3 ]
Xiong, Shengwu [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci Artificial Intelligence, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya, Peoples R China
[3] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Xian, Peoples R China
来源
2024 IEEE/ACM 32ND INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE, IWQOS | 2024年
基金
中国国家自然科学基金;
关键词
C-V2X; Resource Allocation; Multi-agent Reinforcement Learning; LTE-V;
D O I
10.1109/IWQoS61813.2024.10682924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to support diverse applications in intelligent transportation, intelligent connected vehicles (ICVs) need to send multiple types of messages, such as periodic messages and event-driven messages with different frame specifications. However, existing researches often concentrate on the transmission of single-message types, overlooking hybrid communication scenarios where multiple types of messages coexist, posing challenges in meeting the diverse transmission needs of different message types. To optimize the Quality of Service (QoS) in such scenarios, we take the perspective of ICVs and formulate their decision making as a multi-agent reinforcement learning problem. More specifically, we propose a cooperative individual rewards assisted multi-agent reinforcement learning (CIRA) framework. The transformer structure in CIRA is used to avoid mutual interference during the transmission of different vehicles. Besides, the introduction of individual rewards and the dual-layer architecture of CIRA contribute to providing ICVs with more forward-looking message dissemination scheme. Finally, we set up a simulator to create dynamic traffic scenarios reflecting different real-world conditions. We conduct extensive experiments to evaluate the proposed CIRA framework's performance. The results show that CIRA can significantly improve the packet reception rates and ensure low communication delays in various scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multi-Agent Reinforcement Learning for Channel Assignment and Power Allocation in Platoon-Based C-V2X Systems
    Vu, Hung V.
    Farzanullah, Mohammad
    Liu, Zheyu
    Nguyen, Duy H. N.
    Morawski, Robert
    Le-Ngoc, Tho
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [2] Optimization of Resource Allocation for V2X Security Communication Based on Multi-Agent Reinforcement Learning
    Ji, Baofeng
    Dong, Bingyi
    Li, Da
    Wang, Yi
    Yang, Luxi
    Tsimenidis, Charalampos
    Menon, Varun G.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1849 - 1861
  • [3] Resource Allocation in V2X Communications Based on Multi-Agent Reinforcement Learning with Attention Mechanism
    Ding, Yuanfeng
    Huang, Yan
    Tang, Li
    Qin, Xizhong
    Jia, Zhenhong
    MATHEMATICS, 2022, 10 (19)
  • [4] A Research Trends of Reinforcement Learning Algorithms for C-V2X Network Resource Allocation
    Hong, Seonghun
    Kim, Jaemin
    Kim, Gahyun
    Cho, Sungrae
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 61 - 63
  • [5] Optimization of Multi-Agent Handover Based on Team Model in C-V2X Environments
    Liu, Bingyi
    Wang, Dongdong
    Shi, Haiyong
    Wang, Enshu
    Wu, Libing
    Wang, Jianping
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (11): : 2806 - 2820
  • [6] A Cascaded Multi-Agent Reinforcement Learning-Based Resource Allocation for Cellular-V2X Vehicular Platooning Networks
    Narayanasamy, Iswarya
    Rajamanickam, Venkateswari
    SENSORS, 2024, 24 (17)
  • [7] Multi-Agent Reinforcement Learning for Efficient Resource Allocation in Internet of Vehicles
    Wang, Jun-Han
    He, He
    Cha, Jaesang
    Jeong, Incheol
    Ahn, Chang-Jun
    ELECTRONICS, 2025, 14 (01):
  • [8] Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks
    Rosenberger, Julia
    Urlaub, Michael
    Schramm, Dieter
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 118 - 119
  • [9] Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks
    Cui, Yaping
    Shi, Hongji
    Wang, Ruyan
    He, Peng
    Wu, Dapeng
    Huang, Xinyun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 2005 - 2016
  • [10] DISTRIBUTED RESOURCE ALLOCATION IN 5G NETWORKS WITH MULTI-AGENT REINFORCEMENT LEARNING
    Menard, Jon
    Al-Habashna, Ala'a
    Wainer, Gabriel
    Boudreau, Gary
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 802 - 813