Superpixel Prior Cluster-Level Contrastive Clustering Network for Large-Scale Urban Hyperspectral Images and Vehicle Detection

被引:1
作者
Li, Tiancong [1 ]
Cai, Yaoming [2 ]
Zhang, Yongshan [3 ,4 ]
Cai, Zhihua [1 ]
Jiang, Guozhu [1 ]
Liu, Xiaobo [5 ,6 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch Informayon Engn, Wuhan 430073, Peoples R China
[3] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[4] China Univ Geosci, Hubei Key Lab Intelligent Geo Informat Proc, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[6] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat Co, Wuhan 430074, Peoples R China
关键词
Task analysis; Self-supervised learning; Image segmentation; Hyperspectral imaging; Semantics; Clustering methods; Representation learning; Contrastive learning; hyperspectral image clustering; large-scale scene; deep learning; urban traffic; vehicle detection; CLASSIFICATION; ALGORITHM;
D O I
10.1109/TVT.2024.3382890
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
How to get effective sample representations when the training labels are absent is always a problem for hyperspectral image clustering. Some contrastive clustering models guide the representation learning process to adapt to clustering task but these models are still instance-level, which cannot match the clustering task. This article proposes a Superpixel Prior Cluster-level Contrastive (SPCC) clustering network for large-scale hyperspectral image clustering tasks. Instead of instance-level contrastive learning, SPCC retains the useful representations selectively under the guidance of the superpixel subregion. The proposed framework treats each sample as a view for its belonged cluster and learns cluster-level semantic representations. SPCC enhances the separability of samples by employing contrastive loss, which proves effective for vehicle detection tasks. Extensive experiments are designed to obtain competitive results for the popular clustering methods on three Hyperspectral image datasets. The experimental results indicate that SPCC performs well in both hyperspectral image clustering and vehicle recognition tasks.
引用
收藏
页码:2019 / 2031
页数:13
相关论文
共 61 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Cai Y., 2021, P CIKM WORKSH COL 30, V3052
[3]   Superpixel Contracted Neighborhood Contrastive Subspace Clustering Network for Hyperspectral Images [J].
Cai, Yaoming ;
Zhang, Zijia ;
Ghamisi, Pedram ;
Ding, Yao ;
Liu, Xiaobo ;
Cai, Zhihua ;
Gloaguen, Richard .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering [J].
Cai, Yaoming ;
Zeng, Meng ;
Cai, Zhihua ;
Liu, Xiaobo ;
Zhang, Zijia .
INFORMATION SCIENCES, 2021, 578 :85-101
[5]   Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image [J].
Cai, Yaoming ;
Zhang, Zijia ;
Cai, Zhihua ;
Liu, Xiaobo ;
Jiang, Xinwei ;
Yan, Qin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :4191-4202
[6]   Contrastive Multiview Coding With Electro-Optics for SAR Semantic Segmentation [J].
Cha, Keumgang ;
Seo, Junghoon ;
Choi, Yeji .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[7]  
Chen T, 2020, PR MACH LEARN RES, V119
[8]   Curb Detection for Road and Sidewalk Detection [J].
Cheng, Mingmei ;
Zhang, Yigong ;
Su, Yingna ;
Alvarez, Jose M. ;
Kong, Hui .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) :10330-10342
[9]  
Diaz-Barrancas F., 2022, P 24 EUR C VIS, P51
[10]   Fusion of Dual Spatial Information for Hyperspectral Image Classification [J].
Duan, Puhong ;
Ghamisi, Pedram ;
Kang, Xudong ;
RastiO, Behnood ;
Li, Shutao ;
Gloaguen, Richard .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7726-7738