Ice Thickness-Induced Variations in Effective Pressure and Basal Conditions Influence Seasonal and Multi-Annual Ice Velocity at Sermeq Kujalleq (Jakobshavn Isbræ)

被引:0
作者
Lu, Xi [1 ,2 ,3 ]
Sole, Andrew [3 ]
Livingstone, Stephen J. [3 ]
Cheng, Gong [4 ]
Jiang, Liming [1 ,2 ]
Chudley, Tom [5 ]
Noel, Brice [6 ]
Li, Daan [7 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, State Key Lab Precis Geodesy, Wuhan, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[3] Univ Sheffield, Dept Geog, Sheffield, England
[4] Dartmouth Coll, Dept Earth Sci, Hanover, NH USA
[5] Univ Durham, Dept Geog, Durham, England
[6] Univ Liege, Lab Climatol & Topoclimatol, Liege, Belgium
[7] Yancheng Teachers Univ, Coll Urban & Environm Sci, Yancheng, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Jakobshavn Isbr ae; ice flow variability; ice sheet modeling; ISSM; Greenland; dynamics; GLACIER RESPONSE; GREENLAND; DYNAMICS; ACCELERATION; SPEED; VARIABILITY; SENSITIVITY; ELEVATION; MELANGE; MARGINS;
D O I
10.1029/2024GL111092
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Acceleration of Sermeq Kujalleq has been linked to the retreat of its calving front. However, models consistently underestimate its ice-flow variability, indicating that important physical processes might be ignored, which introduces uncertainties in projecting its future mass loss and sea-level rise contribution. Using the Ice-sheet and Sea-level System Model, we simulate Sermeq Kujalleq from 2016 to 2022 constrained by sub-monthly ice front positions. Changes in front position explain >76% of the velocity variations but with a spatially and seasonally varying misfit between modeled and observed velocities up to 30 km upstream. This misfit significantly correlates with variations in height above flotation within 10 km of the terminus. Incorporating these variations into the model by scaling the basal shear stress reduces the average misfit by over 90%. This indicates that seasonal variations in ice thickness-induced effective pressure and basal conditions play a crucial role in controlling intra-annual and longer-term ice-flow variations.
引用
收藏
页数:11
相关论文
共 65 条
  • [31] Greenland Mass Trends From Airborne and Satellite Altimetry During 2011-2020
    Khan, Shfaqat A.
    Bamber, Jonathan L.
    Rignot, Eric
    Helm, Veit
    Aschwanden, Andy
    Holland, David M.
    van den Broeke, Michiel
    King, Michalea
    Noel, Brice
    Truffer, Martin
    Humbert, Angelika
    Colgan, William
    Vijay, Saurabh
    Kuipers Munneke, Peter
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2022, 127 (04)
  • [32] Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools
    Khazendar, Ala
    Fenty, Ian G.
    Carroll, Dustin
    Gardner, Alex
    Lee, Craig M.
    Fukumori, Ichiro
    Wang, Ou
    Zhang, Hong
    Seroussi, Helene
    Moller, Delwyn
    Noel, Brice P. Y.
    van den Broeke, Michiel R.
    Dinardo, Steven
    Willis, Josh
    [J]. NATURE GEOSCIENCE, 2019, 12 (04) : 277 - +
  • [33] King MD, 2020, COMMUN EARTH ENVIRON, V1, DOI 10.1038/s43247-020-0001-2
  • [34] Drainage from water-filled crevasses along the margins of Jakobshavn Isbrae: A potential catalyst for catchment expansion
    Lampkin, D. J.
    Amador, N.
    Parizek, B. R.
    Farness, K.
    Jezek, K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2013, 118 (02) : 795 - 813
  • [35] Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM)
    Larour, E.
    Seroussi, H.
    Morlighem, M.
    Rignot, E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2012, 117
  • [36] The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) - simple tools for the rapid mapping and quantification of changing Earth surface margins
    Lea, James M.
    [J]. EARTH SURFACE DYNAMICS, 2018, 6 (03) : 551 - 561
  • [37] Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zacharias Isstrom, 2015-2017, from Sentinel 1-a/b SAR imagery
    Lemos, Adriano
    Shepherd, Andrew
    McMillan, Malcolm
    Hogg, Anna E.
    Hatton, Emma
    Joughin, Ian
    [J]. CRYOSPHERE, 2018, 12 (06) : 2087 - 2097
  • [38] Modeling a Century of Change: Kangerlussuaq Glacier's Mass Loss From 1933 to 2021
    Lippert, E. Y. H.
    Morlighem, M.
    Cheng, G.
    Khan, S. A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (04)
  • [39] Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland
    Maier, Nathan
    Gimbert, Florent
    Gillet-Chaulet, Fabien
    Gilbert, Adrien
    [J]. CRYOSPHERE, 2021, 15 (03) : 1435 - 1451
  • [40] Greenland liquid water discharge from 1958 through 2019
    Mankoff, Kenneth D.
    Noel, Brice
    Fettweis, Xavier
    Ahlstrom, Andreas P.
    Colgan, William
    Kondo, Ken
    Langley, Kirsty
    Sugiyama, Shin
    van As, Dirk
    Fausto, Robert S.
    [J]. EARTH SYSTEM SCIENCE DATA, 2020, 12 (04) : 2811 - 2841