Robustness of machine learning predictions for FeCo-Ni alloys prepared by various synthesis methods

被引:0
作者
Padhy, Shakti P. [1 ,2 ]
Mishra, Soumya R. [1 ,3 ]
Tan, Li Ping [1 ]
Davidson, Karl P. [1 ]
Xu, Xuesong [4 ]
Chaudhary, Varun [5 ]
Ramanujan, R. V. [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Singapore Ctr 3D Printing, Singapore 639798, Singapore
[3] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, India
[4] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[5] Chalmers Univ Technol, Dept Ind & Mat Sci, S-41296 Gothenburg, Sweden
基金
新加坡国家研究基金会;
关键词
MAGNETIC-PROPERTIES; GRAIN-SIZE; SATURATION MAGNETIZATION; ACCELERATED DESIGN; COERCIVITY; AL; MICROSTRUCTURE; ENHANCEMENT; EVOLUTION;
D O I
10.1016/j.isci.2024.111580
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS. The results show that the experimental property values of arc melted samples deviated less than 14% from predicted values. This work further explains how structural variations across synthesis methods impact property behavior, validating the robustness of ML-predicted compositions and highlighting a pathway for integrating processing conditions into alloy development.
引用
收藏
页数:19
相关论文
共 95 条
[71]  
Schroder D.K., 1990, SEMICONDUCTOR MAT DE
[72]   Effect of annealing on mechanical and thermoelectric properties of a Al2CoCrFeNi high-entropy alloy [J].
Shi, Yansong ;
Shu, Qinghai ;
Liaw, Peter K. ;
Wang, Manman ;
Teng, Chien-Lung ;
Zou, Haoming ;
Wen, Ping ;
Xu, Bolin ;
Wang, Dongxu ;
Wang, Junfeng .
MATERIALS & DESIGN, 2022, 213
[73]   Design and Analysis of High-Speed Permanent Magnet Synchronous Generator With Rotor Structure Considering Electromechanical Characteristics [J].
Shin, Kyung-Hun ;
Bang, Tae-Kyoung ;
Cho, Han-Wook ;
Choi, Jang-Young .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2020, 30 (04)
[74]   Evolution of strength and coercivity during annealing of FeCo based alloys [J].
Sourmail, T .
SCRIPTA MATERIALIA, 2004, 51 (06) :589-591
[75]   Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal [J].
Srakaew, N. ;
Jantaratana, P. ;
Nipakul, P. ;
Sirisathitkul, C. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 435 :201-205
[76]  
Sundar RS, 2005, INT MATER REV, V50, P157, DOI 10.1179/175328005X14339
[77]   Review on soft magnetic metal and inorganic oxide nanocomposites for power applications [J].
Talaat, A. ;
Suraj, M., V ;
Byerly, K. ;
Wang, A. ;
Wang, Y. ;
Lee, J. K. ;
Ohodnicki, P. R., Jr. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870
[78]   Accelerated property evaluation of Ni-Co materials libraries produced by multiple processing techniques [J].
Tan, Li Ping ;
Padhy, Shakti P. ;
Tsakadze, Zviad ;
Chaudhary, V. ;
Ramanujan, R. V. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 :4186-4196
[79]   Rapid multiple property determination from bulk materials libraries prepared from chemically synthesized powders [J].
Tan, Li Ping ;
Chaudhary, V ;
Tsakadze, Z. ;
Ramanujan, R., V .
SCIENTIFIC REPORTS, 2022, 12 (01)
[80]   High throughput multi-property evaluation of additively manufactured Co-Fe-Ni materials libraries [J].
Teh, Wei Hock ;
Chaudhary, V. ;
Chen, Shilin ;
Lim, Suo Hon ;
Wei, Fengxia ;
Lee, Jing Yun ;
Wang, Pei ;
Padhy, Shakti P. ;
Tan, Cheng Cheh ;
Ramanujan, R. V. .
ADDITIVE MANUFACTURING, 2022, 58