Robustness of machine learning predictions for FeCo-Ni alloys prepared by various synthesis methods

被引:0
作者
Padhy, Shakti P. [1 ,2 ]
Mishra, Soumya R. [1 ,3 ]
Tan, Li Ping [1 ]
Davidson, Karl P. [1 ]
Xu, Xuesong [4 ]
Chaudhary, Varun [5 ]
Ramanujan, R. V. [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Singapore Ctr 3D Printing, Singapore 639798, Singapore
[3] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, India
[4] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[5] Chalmers Univ Technol, Dept Ind & Mat Sci, S-41296 Gothenburg, Sweden
基金
新加坡国家研究基金会;
关键词
MAGNETIC-PROPERTIES; GRAIN-SIZE; SATURATION MAGNETIZATION; ACCELERATED DESIGN; COERCIVITY; AL; MICROSTRUCTURE; ENHANCEMENT; EVOLUTION;
D O I
10.1016/j.isci.2024.111580
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS. The results show that the experimental property values of arc melted samples deviated less than 14% from predicted values. This work further explains how structural variations across synthesis methods impact property behavior, validating the robustness of ML-predicted compositions and highlighting a pathway for integrating processing conditions into alloy development.
引用
收藏
页数:19
相关论文
共 95 条
[1]   ON THE ELECTRICAL-PROPERTIES AND ALPHA-REVERSIBLE-GAMMA-TRANSFORMATION OF SOME FE-CO-NI TERNARY ALLOYS [J].
ACHILLEOS, CA ;
CHADJIVASILIOU, SC ;
TSOUKALAS, IA .
MATERIALS RESEARCH BULLETIN, 1991, 26 (08) :821-834
[2]   Binary Fe-Co Alloy Nanoparticles Showing Significant Enhancement in Electrocatalytic Activity Compared with Bulk Alloys [J].
Ahmed, Jahangeer ;
Kumar, Bharat ;
Mugweru, Amos M. ;
Trinh, Phong ;
Ramanujachary, Kandalam V. ;
Lofland, Samuel E. ;
Govind ;
Ganguli, Ashok K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (44) :18779-18784
[3]   Performance Comparison of High-Speed Motors for Electric Vehicle [J].
Aiso, Kohei ;
Akatsu, Kan .
WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (04)
[4]   Influence of spark plasma sintering parameters on magnetic properties of FeCo alloy [J].
Albaaji, Amar J. ;
Castle, Elinor G. ;
Reece, Mike J. ;
Hall, Jeremy P. ;
Evans, Sam L. .
AIP ADVANCES, 2018, 8 (04)
[5]   A review of processing techniques for Fe-Ni soft magnetic materials [J].
Ali, Muhammad ;
Ahmad, Faiz .
MATERIALS AND MANUFACTURING PROCESSES, 2019, 34 (14) :1580-1604
[6]  
[Anonymous], 2021, ASTM A753
[7]   Formation and magnetic properties of nanocrystalline Fe60Co40 alloys produced by mechanical alloying [J].
Bergheul, S ;
Tafat, H ;
Azzaz, M .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2006, 15 (03) :349-351
[8]   Influence of Synthesis Processes on Microstructure and Magnetic Properties in Fe70Co30 Alloy Nanoparticles [J].
Bhoi, B. ;
Singh, Vidyadhar ;
Perumal, A. ;
Srinivas, V. .
INTERNATIONAL CONFERENCE ON MAGNETIC MATERIALS (ICMM-2010), 2010, 1347 :115-118
[9]   The impact of dislocations on coercivity in L10-MnAl [J].
Bittner, F. ;
Freudenberger, J. ;
Schultz, L. ;
Woodcock, T. G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 :528-536
[10]   Phase evolution, microstructure, and improved magnetic properties for off-stoichiometric SmFe12-based alloys [J].
Chai, W. X. ;
Huang, Y. L. ;
Li, H. F. ;
Huang, H. ;
Huang, L. ;
Liu, J. P. ;
Hou, Y. H. ;
Li, W. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 :4676-4681