High-entropy alloy catalysts: high-throughput and machine learning-driven design

被引:24
作者
Chen, Lixin [1 ]
Chen, Zhiwen [1 ]
Yao, Xue [1 ]
Su, Baoxian [1 ]
Chen, Weijian [1 ]
Pang, Xin [2 ]
Kim, Keun-Su [3 ]
Singh, Chandra Veer [1 ,4 ]
Zou, Yu [1 ]
机构
[1] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Toronto, ON M5S 3E4, Canada
[2] Nat Resources Canada, CanmetMAT, Energy Technol Sect ETS, Hamilton, ON L8P 0A5, Canada
[3] Natl Res Council Canada, Secur & Disrupt Technol Ctr, Ottawa, ON K1A 0R6, Canada
[4] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
来源
JOURNAL OF MATERIALS INFORMATICS | 2022年 / 2卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
High-entropy alloys; catalysts; high-throughput; machine learning; structure-activity relationship; OXYGEN REDUCTION; ACCELERATED DISCOVERY; ATOM CATALYSTS; CO2; ELECTROCATALYSTS; GENERATION; ORIGIN;
D O I
10.20517/jmi.2022.23
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloy (HEA) catalysts have recently attracted worldwide research interest due to their promising catalytic performance. Most current studies focus on designing HEA catalysts through trial-and-error methods. This produces scattered data and is not conducive to obtaining a fundamental understanding of the structure-property-performance relationships for HEA catalysts, thereby hindering their rational design. High-throughput (HT) techniques and machine learning (ML) methods show significant potential in generating, processing and analyzing databases with a vast amount of data, providing a new strategy for the further development of HEA catalysts. In this review, we summarize the recent literature on HT techniques for HEA synthesis, characterization and performance testing. We also review the ML models that are used to process and analyze existing databases to accelerate the discovery of HEA catalysts. Finally, the potential challenges and perspectives of HT techniques and ML models are presented to accelerate the discovery of new HEA catalysts and promote their development.
引用
收藏
页数:21
相关论文
共 99 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   ICET - A Python']Python Library for Constructing and Sampling Alloy Cluster Expansions [J].
Angqvist, Mattias ;
Munoz, William A. ;
Rahm, J. Magnus ;
Fransson, Erik ;
Durniak, Celine ;
Rozyczko, Piotr ;
Rod, Thomas H. ;
Erhart, Paul .
ADVANCED THEORY AND SIMULATIONS, 2019, 2 (07)
[3]   Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts [J].
Back, Seoin ;
Yoon, Junwoong ;
Tian, Nianhan ;
Zhong, Wen ;
Tran, Kevin ;
Ulissi, Zachary W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (15) :4401-4408
[4]   Unravelling Composition-Activity-Stability Trends in High Entropy Alloy Electrocatalysts by Using a Data-Guided Combinatorial Synthesis Strategy and Computational Modeling [J].
Banko, Lars ;
Krysiak, Olga A. ;
Pedersen, Jack K. ;
Xiao, Bin ;
Savan, Alan ;
Loeffler, Tobias ;
Baha, Sabrina ;
Rossmeisl, Jan ;
Schuhmann, Wolfgang ;
Ludwig, Alfred .
ADVANCED ENERGY MATERIALS, 2022, 12 (08)
[5]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[6]   Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation** [J].
Batchelor, Thomas A. A. ;
Loeffler, Tobias ;
Xiao, Bin ;
Krysiak, Olga A. ;
Strotkoetter, Valerie ;
Pedersen, Jack K. ;
Clausen, Christian M. ;
Savan, Alan ;
Li, Yujiao ;
Schuhmann, Wolfgang ;
Rossmeisl, Jan ;
Ludwig, Alfred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :6932-6937
[7]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[8]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[9]   Discovery of cobweb-like MoC6 and its application for nitrogen fixation [J].
Chen, Z. W. ;
Lang, X. Y. ;
Jiang, Q. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (20) :9623-9628
[10]   High-throughput and machine-learning accelerated design of high entropy alloy catalysts [J].
Chen, Zhi Wen ;
Chen, LiXin ;
Gariepy, Zachary ;
Yao, Xue ;
Singh, Chandra Veer .
TRENDS IN CHEMISTRY, 2022, 4 (07) :577-579