Multiview Symbolic Regression

被引:0
作者
Russeil, Etienne [1 ]
de Franca, Fabricio Olivetti [2 ]
Malanchev, Konstantin [3 ]
Burlacu, Bogdan [4 ]
Ishida, Emille E. O. [1 ]
Leroux, Marion [5 ]
Michelin, Clement [5 ]
Moinard, Guillaume [6 ]
Gangler, Emmanuel [1 ]
机构
[1] Univ Clermont Auvergne, CNRS, IN2P3, LPC, Clermont Ferrand, France
[2] Univ Fed ABC, Ctr Math Comp & Cognit, Santo Andre, SP, Brazil
[3] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol & Astrophys, Pittsburgh, PA USA
[4] Univ Appl Sci Upper Austria, Heurist & Evolutionary Algorithms Lab, Hagenberg, Austria
[5] Univ Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, Clermont Ferrand, France
[6] Sorbonne Univ, CNRS, LIP6, Paris, France
来源
PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024 | 2024年
基金
巴西圣保罗研究基金会;
关键词
genetic programming; symbolic regression; interpretability; BOUGUER-LAMBERT; MODEL;
D O I
10.1145/3638529.3654087
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression (SR) searches for analytical expressions representing the relationship between explanatory and response variables. Current SR methods assume a single dataset extracted from a single experiment. Nevertheless, frequently, the researcher is confronted with multiple sets of results obtained from experiments conducted with different set-ups. Traditional SR methods may fail to find the underlying expression since the parameters of each experiment can be different. In this work we present Multiview Symbolic Regression (MvSR), which takes into account multiple datasets simultaneously, mimicking experimental environments, and outputs a general parametric solution. This approach fits the evaluated expression to each independent dataset and returns a parametric family of functions f (x; theta) simultaneously capable of accurately fitting all datasets. We demonstrate the effectiveness of MvSR using data generated from known expressions, as well as real-world data from astronomy, chemistry and economy, for which an a priori analytical expression is not available. Results show that MvSR obtains the correct expression more frequently and is robust to hyperparameters change. In real-world data, it is able to grasp the group behaviour, recovering known expressions from the literature as well as promising alternatives, thus enabling the use MvSR to a large range of experimental scenarios.
引用
收藏
页码:961 / 970
页数:10
相关论文
共 35 条
  • [1] [Anonymous], 1967, Journal of organic chemistry, V32, P2
  • [2] [Anonymous], 2006, Society for Astronomical Sciences Annual Symposium
  • [3] Bachelier L., 1900, Ann. Sci. lEcole Norm. Super. Quatr. Ser, V17, P21, DOI [DOI 10.24033/ASENS.476, 10.24033/asens.476]
  • [4] The core-collapse rate from the Supernova Legacy Survey
    Bazin, G.
    Palanque-Delabrouille, N.
    Rich, J.
    Ruhlmann-Kleider, V.
    Aubourg, E.
    Le Guillou, L.
    Astier, P.
    Balland, C.
    Basa, S.
    Carlberg, R. G.
    Conley, A.
    Fouchez, D.
    Guy, J.
    Hardin, D.
    Hook, I. M.
    Howell, D. A.
    Pain, R.
    Perrett, K.
    Pritchet, C. J.
    Regnault, N.
    Sullivan, M.
    Antilogus, P.
    Arsenijevic, V.
    Baumont, S.
    Fabbro, S.
    Le Du, J.
    Lidman, C.
    Mouchet, M.
    Mourao, A.
    Walker, E. S.
    [J]. ASTRONOMY & ASTROPHYSICS, 2009, 499 (03) : 653 - 660
  • [5] The Zwicky Transient Facility: System Overview, Performance, and First Results
    Bellm, Eric C.
    Kulkarni, Shrinivas R.
    Graham, Matthew J.
    Dekany, Richard
    Smith, Roger M.
    Riddle, Reed
    Masci, Frank J.
    Helou, George
    Prince, Thomas A.
    Adams, Scott M.
    Barbarino, C.
    Barlow, Tom
    Bauer, James
    Beck, Ron
    Belicki, Justin
    Biswas, Rahul
    Blagorodnova, Nadejda
    Bodewits, Dennis
    Bolin, Bryce
    Brinnel, Valery
    Brooke, Tim
    Bue, Brian
    Bulla, Mattia
    Burruss, Rick
    Cenko, S. Bradley
    Chang, Chan-Kao
    Connolly, Andrew
    Coughlin, Michael
    Cromer, John
    Cunningham, Virginia
    De, Kishalay
    Delacroix, Alex
    Desai, Vandana
    Duev, Dmitry A.
    Eadie, Gwendolyn
    Farnham, Tony L.
    Feeney, Michael
    Feindt, Ulrich
    Flynn, David
    Franckowiak, Anna
    Frederick, S.
    Fremling, C.
    Gal-Yam, Avishay
    Gezari, Suvi
    Giomi, Matteo
    Goldstein, Daniel A.
    Golkhou, V. Zach
    Goobar, Ariel
    Groom, Steven
    Hacopians, Eugean
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2019, 131 (995)
  • [6] PRICING OF OPTIONS AND CORPORATE LIABILITIES
    BLACK, F
    SCHOLES, M
    [J]. JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) : 637 - 654
  • [7] Bouchaud J.-P., 2000, Theory of financial risks: from statistical physics to risk management, V12
  • [8] Polynomial Equations based on Bouguer-Lambert and Beer Laws for Deviations from Linearity and Absorption Flattening
    Bozdogan, Abdurrezzak E.
    [J]. JOURNAL OF ANALYTICAL CHEMISTRY, 2022, 77 (11) : 1426 - 1432
  • [9] Burlacu Bogdan, 2020, GECCO'20. Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, P1562, DOI 10.1145/3377929.3398099
  • [10] Cranmer M., 2020, ADV NEURAL INFORM PR, V33, P17429