Algorithm Based on the Subset Sum Problem for High Performance Computing

被引:0
作者
Sinchev, B. [1 ]
Sinchev, A. B. [2 ]
Mukhanova, A. M. [3 ]
机构
[1] Int Univ Informat Technol, 34-1 Manas St, Alma Ata 050000, Kazakhstan
[2] Natl Informat Technol JSC, 55-15 Mangilik El Ave,Block C 2-3, Astana 010000, Kazakhstan
[3] Almaty Univ Technol, Tole Bi St 100, Alma Ata 050012, Kazakhstan
来源
PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 6 | 2024年 / 1002卷
关键词
NP-complete class; Index management system; High performance computing;
D O I
10.1007/978-981-97-3299-9_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a polynomial solution of the subset sum problem with time complexity T <= O(kn) <= O(n(2)) and space complexity S <= O((n-1)n/2 <= O (n(2)). The solution is based on a newly proposed initial set indexes' management system and provides a variety of applications including: scheduling, queries in databases, graph problems, and others. The suggested algorithm can be computed as a standalone, self-contained module or implemented as hardware chips. The scientific novelty of the approach represents a significant advancement in addressing the "P vs NP" millennium prize problem.
引用
收藏
页码:627 / 637
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1964, P C LOG METH PHIL SC
[2]  
BELLMAN R., 1956, Naval Res. Logist. Quart., V3, P67, DOI [10.1002/nav.3800030107, DOI 10.1002/NAV.3800030107]
[3]  
Bringmann K, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1073
[4]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[5]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness
[6]  
GuruswamiV MakarychevY, 2011, INNOVATIONS COMPUTER, P321
[7]  
Hennessy J. L., 2011, Computer architecture: a quantitative approach
[8]   COMPUTING PARTITIONS WITH APPLICATIONS TO KNAPSACK PROBLEM [J].
HOROWITZ, E ;
SAHNI, S .
JOURNAL OF THE ACM, 1974, 21 (02) :277-292
[9]  
Karp Richard M, 1972, Complexity of Computer Computations, P85
[10]  
Koiliaris K, 2017, arXiv